• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DU Xiu-li, SONG Jia, LI Liang. Explicit-implicit staggered algorithm of u-p formulation for dynamic problems of fluid-saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 395-403. DOI: 10.11779/CJGE201603002
Citation: DU Xiu-li, SONG Jia, LI Liang. Explicit-implicit staggered algorithm of u-p formulation for dynamic problems of fluid-saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 395-403. DOI: 10.11779/CJGE201603002

Explicit-implicit staggered algorithm of u-p formulation for dynamic problems of fluid-saturated porous media

More Information
  • Received Date: December 02, 2014
  • Published Date: March 24, 2016
  • In order to describe the dynamic response of fluid-saturated porous media with the formulation of soil displacement u and pore pressure p, an explicit-implicit staggered algorithm is proposed based on the central difference method and precise time-integration method. The Gauss integration, trapezoid integration and the second-order Lagrange interpolation polynomial are utilized to simulate the soil displacement in the inhomogeneous term of the pore pressure formulation, respectively. Furthermore, an acubic spline interpolation method is developed based on the precise time-integration method, and it can avoid the computation of the inverse matrixes involved coupling velocity term. Finally, some cases are adopted to verify the proposed method. The computational results obtained by the proposed method have a good agreement with those by the Zienkiewicz's explicit-implicit method, indicating the effectiveness of the proposed approach.
  • [1]
    ZIENKIEWICZ O C, CHANG C T, BETTESS P. Drained, undrained, consolidating, and dynamic behavior assumptions in soils: Limits of validity[J]. Géotechnique, 1980, 30(4): 385-395.
    [2]
    李小军, 廖振鹏, 杜修力. 有阻尼体系动力问题的一种显式差分解法[J]. 地震工程与工程振动, 1992, 12(4): 74-79. (LI Xiao-jun, LIAO Zhen-peng, DU Xiu-li. An explicit finite difference method for viscoelastic dynamic problem[J]. Earthquake Engineering and Engineering Vibration, 1992, 12(4): 74-79. (in Chinese))
    [3]
    杜修力, 王进廷. 阻尼弹性结构动力计算的显式差分法[J]. 工程力学, 2000, 17(5): 37-43. (DU Xiu-li, WANG Jin-ting. An explicit difference formulation of dynamic response calculation of elastic structure with damping[J]. Engineering Mechanics, 2000, 17(5): 37-43. (in Chinese))
    [4]
    王进廷, 杜修力. 有阻尼体系动力分析的一种显式差分法[J]. 工程力学, 2002, 19(3): 109-112. (WANG Jin-ting, DU Xiu-li. An explicit difference method for dynamic analysis of a structure system with damping[J]. Engineering Mechanics, 2002, 19(3): 109-112. (in Chinese))
    [5]
    ZIENKIEWICZ O C, SHIOMI T. Dynamic behavior of saturated porous media: the generated Biot formulation and its numerical solution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 71-96.
    [6]
    PARK K C. Stabilization of partitioned solution procedure for pore fluid-soil interaction analysis[J]. International Journal for Numerical Methods in Engineering, 1983, 19(11): 1669-1673.
    [7]
    SIMON B R, WU J S S, ZIENKIEWICZ O C, et al. Evaluation of u - w and u -π finite element methods for the dynamic response of saturated porous media using one-dimensional models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10(5): 461-482.
    [8]
    ZIENKIEWICZ O C, PAUL D K, CHAN A H C. Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems[J]. International Journal for Numerical Methods in Engineering, 1988, 26(5): 1039-1055.
    [9]
    HUANG M S, ZIENKIEWICZ O C. New unconditionally stable staggered solution procedures for coupled soil-pore fluid dynamic problems[J]. International Journal for Numerical Methods in Engineering, 1998, 43(6): 1029-1052.
    [10]
    HUANG M S, WU S M, ZIENKIEWICZ O C. Incompressible or nearly incompressible soil dynamic behavior-a new staggered algorithm to circumvent restrictions of mixed formulation[J]. Soil Dynamic and Earthquake Engineering, 2001, 21(2): 169-179.
    [11]
    HUANG M S, YUE Q Z, THAM L G, et al. On the stable finite element procedures for dynamic problems of saturated porous media[J]. International Journal for Numerical Methods in Engineering, 2004, 61(9): 1421-1450.
    [12]
    PREVOST J H. Wave propagation in fluid-saturated porous media: an efficient finite element procedure[J]. Soil Dynamics and Earthquake Engineering, 1985, 4(4): 183-201.
    [13]
    ZIENKIEWICZ O C, HUANG M S, WU J, et al. A new algorithm for the coupled soil-pore fluid problem[J]. Shock and Vibration, 1993, 1(1): 3-14.
    [14]
    赵成刚, 王进廷, 史培新, 等. 流体饱和两相多孔介质动力反应分析的显式有限元法[J]. 岩土工程学报, 2001, 23(2): 178-182. (ZHAO Cheng-gang, WANG Jin-ting, SHI Pei-xin, et al. Dynamic analysis of fluid-saturated porous media by using explicit finite element method [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 178-182. (in Chinese))
    [15]
    王进廷, 杜修力, 赵成刚. 液固两相饱和介质动力分析的一种显式有限元法[J]. 岩石力学与工程学报, 2002, 21(8): 1199-1204. (WANG Jin-ting, DU Xiu-li, ZHAO Cheng-gang. Explicit finite element method for dynamic analysis of fluid-saturated porous solid[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(8): 1199-1204. (in Chinese))
    [16]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅱ: Higher-frequency range[J]. The Acoustical Society of America, 1956, 28(2): 179-191.
    [17]
    钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136. (ZHONG Wan-xie. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136. (in Chinese))
    [18]
    刘晶波, 杜修力. 结构动力学[M]. 北京: 机械工业出版社, 2005. (LIU Jing-bo, DU Xiu-li. Dynamics of structures[M]. Beijing: China Machine Press, 2005. (in Chinese))
    [19]
    汪梦甫, 周锡元. 结构动力方程的高斯精细时程积分法[J]. 工程力学, 2004, 21(4): 13-16. (WANG Meng-fu, ZHOU Xi-yuan. Gauss precise time-integration of structural dynamic analysis [J]. Engineering Mechanics, 2004, 21(4): 13-16. (in Chinese))
    [20]
    徐萃薇. 计算方法引论[M]. 北京: 高等教育出版社, 1985. (XU Cui-wei. Introductory lectures of computational methods[M]. Beijing: Higher Education Press, 1985. (in Chinese))
    [21]
    高小科, 邓子辰, 黄永安. 基于三次样条插值的精细积分法[J]. 振动与冲击, 2007, 26(9): 75-82. (GAO Xiao-ke, DENG Zi-chen, HUANG Yong-an. A high precise direct integration based on cubic spline interpolation[J]. Journal of vibration and shock, 2007, 26(9): 75-82. (in Chinese))
    [22]
    关 冶, 陆金甫. 数值分析基础[M]. 北京: 高等教育出版社, 2010. (GUAN Ye, LU Jin-fu. Fundamentals of numerical analysis[M]. Beijing: Higher Education Press, 2010. (in Chinese))
    [23]
    ZIENKIEWICZ O C, LEUNG K H, HINTON K. Liquefaction and permanent deformation under dynamic conditions-numerical solution and constitutive relations[M]// Soil Mechanics-Transient and Cyclic Loads, Constitutive Relations and Numerical Treatment, PANDE G N, ZIENKIEWICZ O C, ed. New York: John Wiley & Sons Ltd, 1982: 71-103.
  • Cited by

    Periodical cited type(10)

    1. 王军,朱传根,李勋,王波,张艺腾. 类岩石试件三轴扰动破坏特性试验研究. 采矿与岩层控制工程学报. 2024(02): 15-28 .
    2. 王世鸣,白云帆,王嘉琪,吴秋红. 应力波斜入射下砂岩层裂破坏的试验研究. 振动与冲击. 2024(14): 201-210 .
    3. 杨阳,杨仁树,陈骏,方士正,李炜煜,范子儀,张祥,朱锐,张渊通,杨欢,王雁冰. 岩石爆破基础理论研究进展与展望Ⅰ—本构关系. 工程科学学报. 2024(11): 1931-1947 .
    4. 王磊,陈礼鹏,刘怀谦,朱传奇,李少波,范浩,张帅,王安铖. 不同初始瓦斯压力下煤体动力学特性及其劣化特征. 岩土力学. 2023(01): 144-158 .
    5. 李晓照,张骐烁,柴博聪,戚承志. 动力损伤后的脆性岩石静力蠕变断裂模型研究. 力学学报. 2023(04): 903-914 .
    6. 王世鸣,王嘉琪,熊咸瑞,陈正红,桂易林,周健. 斜入射波扰动对岩石层裂的影响(英文). Journal of Central South University. 2023(06): 1981-1992 .
    7. 肖军华,白英琦,张骁,刘志勇,王炳龙. 考虑应力波透反射作用的分层颗粒材料细观动力响应分析. 力学季刊. 2023(03): 620-632 .
    8. 陈绍杰,冯帆,李夕兵,王成,李地元,ROSTAMI Jamal,朱泉企. 复杂开采条件下深部硬岩板裂化破坏试验与模拟研究进展和关键问题. 中国矿业大学学报. 2023(05): 868-888 .
    9. 李学文,邓凯萱. 高压水射流破除混凝土研究现状及展望. 广东建材. 2022(10): 16-20 .
    10. 常聚才,齐潮,殷志强,史文豹,贺凯,吴昊原. 动载作用下端锚锚固体力学响应特征研究. 岩土力学. 2022(12): 3294-3304 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return