• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Min, DU Yan-jun, WANG Fei, YOU Quan, DONG Dong-dong. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253-262. DOI: 10.11779/CJGE201602008
Citation: ZHOU Min, DU Yan-jun, WANG Fei, YOU Quan, DONG Dong-dong. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253-262. DOI: 10.11779/CJGE201602008

Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence

More Information
  • Received Date: March 20, 2015
  • Published Date: February 24, 2016
  • Failure of buried high-density polyethylene (HDPE) pipes caused by land subsidence is often encountered in the engineering practice. The main reason is the additional stress and strain on the buried HDPE pipes induced by the land subsidence. Most of the previous studies focus on the mechanical responses of HDPE pipes to a mobilized zone in the ground with a specific size. However, no analytical methods are available to evaluate the pipe responses during the process of ground movement. In this study, coarse sand is filled in a custom-made pipe-soil interaction testing system, and the lowering of the adjustable bottom of the test box is used to simulate the effect of land subsidence. During the test process, the earth pressure, deformation of HDPE pipes and subsurface settlement above the pipe are measured. The test results demonstrate that (1) The vertical deflection distribution of HDPE pipes in the longitudinal direction agrees well with the modified Gaussian curve; (2) The vertical earth pressure on the pipe crown increases with the lowering of the bottom plates, and the soil arching ratio at the pipe crown increases from 0.7 to 2.05, which indicates that negative soil arching occurs above the pipe during the ground movement; (3) The effect of the ground movement on the deformation of HDPE pipes gradually decreases with the decrease of the thickness of soil cover; (4) The magnitude of the subsurface settlement above the pipe is limited more significantly when the bending stiffness of the pipe increases.
  • [1]
    吴 念. 我国HDPE双壁波纹管发展现状[J]. 塑料, 2007, 36(5): 39-42. (WU Nian. Development of domestic double-wall corrugated pipes[J]. Plastics, 2007, 36(5): 39-42. (in Chinese))
    [2]
    陈秀华. HDPE 双壁波纹管在市政排水工程中的应用优势[J]. 广东建材, 2006(6): 7-9. (CHEN Xiu-hua. The advantages of HDPE double-wall corrugated pipe in municipal drainage project[J]. Guangdong Building Materials, 2006(6): 7-9. (in Chinese))
    [3]
    邢丽霞, 阙列东. 我国的地面塌陷及其危害[J]. 中国地质灾害与防治学报, 1997, 8(增刊): 23-28. (XING Li-xia, QUE Lie-dong. The distribution and harm of the land collapses in China[J]. Chinese Journal of Geological Hazaro and Control, 1997, 8(S): 23-28. (in Chinese))
    [4]
    WINKLER E. Die Lehre von der Elastizität und Festigkeit[D]. Czechoslovakia: Dominicus Prague, 1867. (WINKLER E. The theory of elasticity and stiffness[D]. Czechoslovakia: Dominicus Prague, 1867. (in Czech))
    [5]
    HETENYI M. Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering[M]. Ann Arbor: University of Michigan Press, 1964.
    [6]
    张士乔, 李 洵, 吴小刚. 地基差异沉降时管道的纵向力学性状分析[J]. 中国农村水利水电, 2003(7): 46-48. (ZHANG Tu-qiao, LI Xun, WU Xiao-gang. Analysis of longitudinal mechanical properties for pipeline during foundation uneven settlement[J]. China Rural Water and Hydropower, 2003(7): 46-48. (in Chinese))
    [7]
    KERR A D. Elastic and viscoelastic foundation models[J]. Journal of Applied Mechanics, 1964, 31(3): 491-498.
    [8]
    FILONENKO-BORODICH M M. Some approximate theories of the elastic foundation[J]. Uchenyie Zapiski Moskovskogo Gosudarstuennogo Universiteta Mechanika, 1940, 46: 3-18.
    [9]
    HETENYI M. A general solution for the bending of beams on an elastic foundation of arbitrary continuity[J]. Journal of Applied Physics, 2004, 21(1): 55-58.
    [10]
    KERR A D. Elastic and viscoelastic foundation models[J]. Journal of Applied Mechanics, 1964, 31(3): 491-498.
    [11]
    申文明, 唐晓武, 边学成, 等. 地基不均匀沉降时埋地管涵纵向力学模型探讨[J]. 工业建筑, 2010(10): 82-85. (SHEN Wen-ming, TANG Xiao-wu, BIAN Xue-cheng. Study on the longitudinal mechanical model of buried culvert during foundation differential settlement[J]. Industrial Construction, 2010(10): 82-85. (in Chinese))
    [12]
    冯启民, 高惠英. 受沉陷作用埋地管道破坏判别方法[J]. 地震工程与工程振动, 1997, 17(2): 59-66. (FENG Qi-min, GAO Hun-ying. Damage criteria of buried pipelines through ground settlement zone[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(2): 59-66. (in Chinese))
    [13]
    高惠瑛, 冯启民. 场地沉陷埋地管道反应分析方法[J]. 地震工程与工程振动, 1997, 17(1): 68-75. (GAO Hui-ying, FENG Qi-min. Response analysis for buried pipelines through settlement zone[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(1): 68-75. (in Chinese))
    [14]
    柳春光, 史永霞. 沉陷区域埋地管线数值模拟分析[J]. 地震工程与工程振动, 2008, 28(4): 178-183. (LIU Chun-guang, SHI Yong-xia. Numerical analysis of buried pipelines subjected to the settlement[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(4): 178-183. (in Chinese))
    [15]
    刘学杰, 孙绍平. 地下管道穿越断层的应变设计方法[J]. 特种结构,2005, 22(2): 81-85. (LIU Xue-jie, SUN Shao-ping. The strain-based design method of underground pipeline crossing faults[J]. Special Structure, 2005, 22(2): 81-85. (in Chinese))
    [16]
    李小军, 侯春林, 赵 雷, 等. 考虑压缩失效时埋地管线跨地震断层的最佳交角研究[J]. 应用基础与工程科学学报, 2006, 14(2): 203-209. (LI Xiao-jun, HOU Chun-lin, ZHAO Lei. Study on the best crossing angle between pipeline and faoult considering compression failure of pipe[J]. Journal of Basic Science and Engineering, 2006, 14(2): 203-209. (in Chinese))
    [17]
    金 浏, 王 苏, 杜修力. 场地沉陷作用下埋地管道屈曲反应分析[J]. 世界地震工程, 2011, 27(2): 142-147. (JIN Liu, WANG Su, DU Xiu-li. Buckling respionse analysis of buried pipelines subjected to the site soil settlement[J]. World Earthquake Engineering, 2011, 27(2): 142-147. (in Chinese))
    [18]
    RAKITIN B, XU M. Centrifuge testing to simulate buried reinforced concrete pipe joints subjected to traffic loading[J]. Canadian Geotechnical Journal, 2015, 52(11): 1762-1774.
    [19]
    VORSTER T E B. The effects of tunnelling on buried pipes[D]. Cambridge: Cambridge University, 2005.
    [20]
    WANG F, DU Y J, YANG X M. Physical modeling on ground responses to tunneling in sand considering the existence of HDPE pipes[J]. Geotechnical Testing Journal, 2015, 38(1): 85-97.
    [21]
    DHAR A S, MOORE I D, MCGRATH T J. Two-dimensional analyses of thermoplastic culvert deformations and strains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 199-208.
    [22]
    COREY R, HAN J, KHATRI D K, et al. Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 1-10.
    [23]
    VORSTER T E, KLAR A, SOGA K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410.
  • Cited by

    Periodical cited type(9)

    1. 李林,陈镇旺,蔡阳,胡小蝶. 基于GeoPIV-RG技术的三轴试样变形精细测量方法验证. 长江科学院院报. 2024(04): 131-139 .
    2. 袁炳祥,李志杰,陈伟杰,罗庆姿,杨光华,王永洪. 基于PIV技术与分形理论的桩–土系统水平循环受荷模型试验研究. 岩石力学与工程学报. 2023(02): 466-482 .
    3. 常记,杨晓峰,姚兆明. 基于PIV技术的水平桩土相互作用试验研究. 宁夏工程技术. 2023(01): 7-11+17 .
    4. 李博,王晔,邹良超,杨磊. 岩石裂隙内浆液–水两相流可视化试验与驱替规律研究. 岩土工程学报. 2022(09): 1608-1616+2-3 . 本站查看
    5. 刘刚,鲜杰,臧冬冬. 岩土工程模型试验监测技术研究、应用与方向. 中国矿业大学学报. 2022(06): 1069-1085 .
    6. 侯宇宙,陈伟,陈捷. 基于PIV技术的新型土壤收缩轨迹测试装置研制. 中国测试. 2021(09): 113-118 .
    7. 朱鸿鹄,王德洋,王宝军,朱宝,施斌. 基于光纤传感及数字图像测试的管-土相互作用试验研究. 工程地质学报. 2020(02): 317-326 .
    8. 潘晓东,周廉默,孙宏磊,蔡袁强,史吏,袁宗浩. 基于粒子图像测速的高含水率软土真空预压试验. 浙江大学学报(工学版). 2020(06): 1078-1085 .
    9. 刘承婷,闫作秀,刘钢,张维薇,杨盼盼. 水平环空井段内岩屑运移规律实验研究. 当代化工. 2019(02): 333-336 .

    Other cited types(25)

Catalog

    Article views (442) PDF downloads (467) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return