LEI Xian-shun, XIE Wo, LU Kun-lin, ZHU Da-yong, CHEN Ju-xiang. Model tests of sliding and accumulation characteristics of cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 226-236. DOI: 10.11779/CJGE201602005
    Citation: LEI Xian-shun, XIE Wo, LU Kun-lin, ZHU Da-yong, CHEN Ju-xiang. Model tests of sliding and accumulation characteristics of cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 226-236. DOI: 10.11779/CJGE201602005

    Model tests of sliding and accumulation characteristics of cohesionless soil

    More Information
    • Received Date: February 02, 2015
    • Published Date: February 24, 2016
    • By using laboratory model tests, the unconstrained sliding and accumulation of gravel on an inclined board are studied. The influences of various parameters of volume, gravel size, shape of accumulation, height of slope, angle of initiation region, constraint angle of slope toe and friction coefficient of sliding surface on the characteristics of final accumulation (run-out, width, thickness, and area) are investigated. The results show that with the increase of volume of accumulation, grain size, height of slope, angle of initiation region and constrained angle of slope toe and the decrease of friction coefficient of sliding surface, the scope of the final accumulation is expanded. The lateral extension motion of gravel on the slope has two different mechanisms: sliding to the slope toe with a certain angle, and sliding downward along the direction perpendicular to the slope toe when the lateral extension reaches a certain width. It is confirmed that the volume of accumulation, friction coefficient of sliding surface, gravel shape and constrained angle of slope toe are the most significant factors to influence the run-out and accumulation area, and the height of slope and volume of accumulation have significant influences on the width. Finally, the test results may provide a preliminary basis for further studies on landslide run-out and accumulation characteristics.
    • [1]
      HSÜ K J. Catastrophic debris streams (sturzstroms) generated by rockfalls[J]. Geological Society of America Bulletin, 1975, 86(1): 129-140.
      [2]
      DAVIES T R, MCSAVENEY M J, HODGSON K A. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal, 1999, 36(6): 1096-1110.
      [3]
      DAVIES T R H. Spreading of rock avalanche debris by mechanical fluidization[J]. Rock Mechanics, 1982, 15(1): 9-24.
      [4]
      OKURA Y, KITAHARA H, SAMMORI T. Fluidization in dry landslides[J]. Engineering Geology, 2000, 56(3): 347-360.
      [5]
      HUNGR O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 1995, 32(4): 610-623.
      [6]
      CRUDEN D M, HUNGR O. The debris of the Frank Slide and theories of rockslide-avalanche mobility[J]. Canadian Journal of Earth Sciences, 1986, 23(3): 425-432.
      [7]
      MCDOUGALL S, HUNGR O. A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 2004, 41(6): 1084-1097.
      [8]
      HUTTER K, KOCH T. Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions[J]. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1991, 334(1633): 93-138.
      [9]
      KENT P E. The Transport mechanism in catastrophic rock falls[J]. Journal of Geology, 1966, 74(1): 79-83.
      [10]
      SCHEIDDEGER A E. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics, 1973, 5(4): 231-236.
      [11]
      ZHOU Jia-wen, CUI Peng, FANG Hua. Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake China[J]. Landslides, 2013, 10(3): 331-342.
      [12]
      鲁晓兵, 张旭辉, 崔 鹏. 碎屑流沿坡面运动的数值模拟[J]. 岩土力学, 2009, 30(增刊2): 524-527. (LU Xiao-bing, ZHANG Xu-hui, CUI Peng. Numerical simulation of clastic grain flow along a slope[J]. Rock and Soil Mechanics, 2009, 30(S2) : 524-527. (in Chinese))
      [13]
      OKURA Y, KITAHARA H, SAMMORI T, et al. The effects of rock fall volume on runout distance[J]. Engineering Geology, 2000, 58(2): 109-124.
      [14]
      DAVIES T R, MCSAVENEY M J. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal, 1999, 36(2): 313-320.
      [15]
      MANZELLA I, LABIOUSE V. Qualitative analysis of rock avalanches propagation by means of physical modelling of not constrained gravel flows[J]. Rock Mechanics and Rock Engineering, 2008, 41(1): 133-151.
      [16]
      MANZELLA I, LABIOUSE V. Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches[J]. Engineering Geology, 2009, 109(1): 146-158.
      [17]
      MANCARELLA D, HUNGR O. Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers[J]. Canadian Geotechnical Journal, 2010, 47(8): 827-841.
      [18]
      吴 越, 刘东升, 李明军. 滑体下滑及冲击受灾体过程中的能耗规律模型试验[J]. 岩石力学与工程学报, 2011, 30(4): 693-701. (WU Yue, LIU Dong-sheng, LI Ming-jun. Landslide model experiment for energy dissipation law in sliding and impact processes[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 693-701. (in Chinese))
      [19]
      刘涌江, 胡厚田, 赵晓颜. 高速滑坡岩体碰撞效应的试验研究[J]. 岩土力学, 2004, 25(2): 255-260. (LIU Yong-jiang, HU Hou-tian, ZHAO Xiao-yan. Experimental study of impact effect of high-speed landslide[J]. Rock and Soil Mechanics, 2004, 25(2): 255-260. (in Chinese))
      [20]
      徐 超, 廖星樾, 叶观宝, 等. HDPE膜界面摩擦特性的斜板仪试验研究[J]. 岩土工程学报, 2006, 28(8): 989-993. (XU Chao, LIAO Xing-yue, YE Guan-bao, et al. Researches on frictional properties of HDPE geomembrane using tilt table device[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 989-993. (in Chinese))
      [21]
      樊晓一, 乔建平. “坡”、“场”因素对大型滑坡运动特征的影响[J]. 岩石力学与工程学报, 2010, 29(11): 2337-2348. (FAN Xiao-yi, QIAO Jian-ping. Influence of landslide and ground factors on large-scale landslide movement[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2337-2348. (in Chinese))
      [22]
      MELOSH H J. Giant rock avalanches[J]. Nature, 1990, 348(6301): 483-484.
    • Related Articles

      [1]WANG Ziyuan, MO Pinqiang, HU Jing, ZHAO Zilu, XIAO Qiong. Experimental study on base pressure distribution of accumulations of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 158-163. DOI: 10.11779/CJGE2024S10020
      [2]LI Jian, LI Shichang, WU Gu, CHEN Shanxiong, YU Fei, DAI Zhangjun, ZHANG Yu. Soil water characteristics of coarse-grained accumulation soil and their prediction method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 50-53. DOI: 10.11779/CJGE2023S10037
      [3]YANG Xiao-hui, CHEN Kun-quan, DIAO Xian-feng, ZHOU Ting-yu. Model tests and stability of accumulation landslides under coupling action of earthquake and rainfall[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 58-62. DOI: 10.11779/CJGE2022S1011
      [4]ZHAN Zheng-gang, CHENG Rui-lin, SUN Wei, ZHANG He-zuo. Disaster analysis and countermeasures of large accumulation in reservoir areas[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 194-200. DOI: 10.11779/CJGE202201020
      [5]XIA Yuan-you, CHEN Chen, NI Qing. Pull-out mechanism of continuous ball shape anchors in transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 804-812. DOI: 10.11779/CJGE201705004
      [6]YANG Ji-hong, DONG Jin-yu, HUANG Zhi-quan, ZHENG Zhu-guang, QI Dan. Large-scale direct shear tests on accumulation body with different stone contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 161-166. DOI: 10.11779/CJGE2016S2026
      [7]ZUO Zi-bo, ZHANG Lu-lu, WANG Jian-hua. Model tests on rainfall-induced colluvium landslides: effects of particle-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1319-1327. DOI: 10.11779/CJGE201507020
      [8]ZHU Zheng-guo, ZHU Yong-quan, WU Guang-ming, ZHANG Bin, YU Jian-tao, WANG Jin-tao. Strengthening method and stability analysis for tunnel base in debris flow accumulation body[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 617-621.
      [9]Stability and treatment of Zhenggang landslide accumulation mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 28(9).
      [10]CHEN Hongqi, HUANG Runqiu, LIN Feng. Study on the spatial engineering effect of large accumulation slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 323-328.
    • Cited by

      Periodical cited type(22)

      1. 王浩,付德伟,郭剑波,晏田田,宋昊明. 黄原胶和木质素纤维改良粉砂土抗压强度特性及微观机理分析. 科学技术与工程. 2025(04): 1602-1612 .
      2. 童小东,陈文义,慈祥,孙任运,黎冰. 生物高分子聚合物固化沙漠砂室内试验研究. 工程力学. 2025(03): 68-76 .
      3. 王永辉. 冻融循环条件下黏土抗剪强度试验研究. 路基工程. 2025(02): 57-62 .
      4. 柴寿喜,赵熹,魏丽,丛海琦. 含盐量对固化硫酸盐渍土抗剪性能与微观结构的影响. 工业建筑. 2025(04): 162-167 .
      5. 戴涛,蒋潇伊,鹿庆蕊,陈士军. 木质素纤维-水泥改良土无侧限抗压强度试验. 科学技术与工程. 2025(14): 5999-6008 .
      6. 尹晓雯. 冻融循环下纤维-造纸废物联合改良淤泥质土力学性能研究. 粘接. 2024(02): 139-142 .
      7. 朱锐,王燕杰,黄英豪,张文,邢玮,周峰. 木质素纤维改良膨胀土的冻融特性及微观机理. 农业工程学报. 2024(02): 263-272 .
      8. 周恩全,张曼,居东煜,王龙,李护良. 干湿循环下木质素改良粉土抗剪强度特性. 工程科学与技术. 2024(02): 208-216 .
      9. 魏丽,杨光,尚军,柴寿喜. 冻融损伤过程中纤维加筋土的抗压性能与裂隙演化. 土木工程学报. 2024(04): 81-91 .
      10. 徐鑫,于忠禹,牛岑岑,苑晓青,雷浩民. 双聚合物改良分散性土的力学特性及机制研究. 广西大学学报(自然科学版). 2024(03): 490-502 .
      11. 朱怀太,欧尔峰,姜琪,赵永春,赵建沅. 冻融作用下复合相变材料改良黄土力学特性研究及机理分析. 防灾减灾工程学报. 2024(03): 715-724 .
      12. 何菲,雷婉玉,岳亚强,毛尔清,刘清泉,王旭. 基于CiteSpace知识图谱的冻土路基研究现状与趋势分析. 冰川冻土. 2024(03): 891-908 .
      13. 李琦峰,邢峥光,党冰,彭尔兴,胡晓莹. 木质素纤维-MICP固化粉土在冻融循环作用下的力学性能研究. 冰川冻土. 2024(06): 1828-1838 .
      14. 徐亚利,吴先锋. 纤维加筋土力学性能与耐久性能研究进展. 长春工程学院学报(自然科学版). 2024(04): 16-21 .
      15. 任昆,于泽宁,石孟奇. 冻融条件下水泥煤渣改良土非均匀损伤特性. 铁道工程学报. 2023(07): 15-19+26 .
      16. 董超凡,张吾渝,孙翔龙,解邦龙. 木质素纤维改良黄土抗剪强度的试验研究. 安全与环境工程. 2022(02): 102-110 .
      17. 彭丽云,华小宁,刘德欣,齐吉琳. 秸秆加筋粉土的冻胀特性研究. 冰川冻土. 2022(01): 241-250 .
      18. 董超凡,林城,张吾渝,孙翔龙,黄雨灵. 寒旱区木质素纤维改良黄土的热学与力学性质研究. 干旱区资源与环境. 2022(05): 119-126 .
      19. 董超凡,张吾渝,张瑞星,黄雨灵,高英. 冻融作用下木质素纤维改良黄土力学与热学特性试验研究. 冰川冻土. 2022(02): 612-622 .
      20. 阮波,袁忠正,张佳森,郑世龙,张向京,聂如松. 养护条件对纤维水泥改良风积沙强度及微观结构影响. 铁道科学与工程学报. 2022(06): 1594-1604 .
      21. 柴寿喜,张琳,魏丽,田萌萌. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构. 水文地质工程地质. 2022(05): 96-105 .
      22. 程卓,崔高航,高原昊,刚浩航,高泽宁,杨政,张鑫. 季冻区粉煤灰加固路基土力学性能试验研究. 硅酸盐通报. 2021(11): 3854-3864+3875 .

      Other cited types(35)

    Catalog

      Article views (421) PDF downloads (465) Cited by(57)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return