Citation: | JIU Yong-zhi, HUANG Mao-song. Studies on pile bearing characteristics in saturated clay under excavation by model tests and a simplified method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 202-209. DOI: 10.11779/CJGE201602002 |
[1] |
MOCHTAR I B, EDIL T B. Shaft resistance of model pile in clay[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(11): 1227-1243.
|
[2] |
POULOS H G, CHAN K E. Laboratory study of pile skin friction in calcareous sand[R]. Sydney: University of Sydney, 1984.
|
[3] |
IWASAKI Y, WATANABE H, FUKUDA M, et al. Construction control for underpinning piles and their behavior during excavation[J]. Géotechnique, 1994, 44(4): 681-689.
|
[4] |
郦建俊, 黄茂松, 王卫东, 等. 开挖条件下抗拔桩承载力的离心模型试验[J]. 岩土工程学报, 2010, 32(3): 388-396. (LI Jian-jun, HUANG Mao-song, WANG Wei-dong, et al. Centrifugal model tests on bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 388-396. (in Chinese))
|
[5] |
刁 钰. 超深开挖对坑底抗压桩竖向承载力及沉降特性影响研究[D]. 天津: 天津大学, 2011. (DIAO Yu. Studies on effects of super-deep excavation on the bearing capacity and settlement behavior of compression piles beneath the basement[D]. Tianjin: Tianjin University, 2011. (in Chinese))
|
[6] |
陈锦剑, 吴 琼, 王建华, 等. 开挖卸荷条件下单桩承载力特性的模型试验研究[J]. 岩土工程学报, 2010, 32(增刊2): 85-88. (CHEN Jin-jian, WU Qiong, WANG Jian-hua, et al. Model tests on bearing capacity of single pile influenced by excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 85-88. (in Chinese))
|
[7] |
罗耀武, 胡 琦, 陈云敏, 等. 基坑开挖对抗拔桩极限承载力影响的模型试验研究[J]. 岩土工程学报, 2011, 33(3): 427-432. (LUO Yao-wu, HU Qi, CHEN Yun-min, et al. Model tests on ultimate uplift capacity of piles under excavation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 427-432. (in Chinese))
|
[8] |
TOMLINSON M J. The adhesion of piles driven in clay soils[C]// Proceedings of the 4th International Conference on Soils Mechanics and Foundation Engineering, Vol 2. London: Thomas Telford Ltd, 1957: 66-71.
|
[9] |
SLADEN J A. The adhesion factor: applications and limitations[J]. Canadian Geotechnical Journal, 1992, 29(2): 322-326.
|
[10] |
CHERUBINI C. A few comments on pile design: discussion[J]. Canadian Geotechnical Journal, 1998, 35(5): 905.
|
[11] |
LACASSE S, BOISARD P. Consequence of the new API RP2A guideline for piles in soft clays[C]// Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering. New Delhi, 1994: 527-530.
|
[12] |
American Petroleum Institute (API). Recommended practice for planning, designing and constructing fixed offshore platforms—load and resistance factor design[S]. 1993.
|
[13] |
KOLK H J, van der VELDE E. A reliable method to determine the friction capacity of piles driven into clays[C]// Proceedings of the 28th Annual Offshore Technology Conference. Houston, 1996: 337-346.
|
[14] |
纠永志. 开挖条件下软黏土地基桩筏基础非线性分析[D]. 上海: 同济大学, 2014. (JIU Yong-zhi. Nonlinear analysis of pile-raft foundations during excavation in soft clay[D]. Shanghai: Tongji University, 2014. (in Chinese))
|
[15] |
KRAFT L M, RAY R P, KAGAWA T. Theoretical t - z curves[J]. Journal of the Geotechnical Engineering Division, ASCE, 1981, 107(11): 1543-1561.
|
[1] | LI Wu-gang, YANG Qing, LIU Wen-hua, YANG Gang, SUN Xiu-li. Structured quantitative characterization and elastoplastic constitutive model of clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 678-686. DOI: 10.11779/CJGE202204010 |
[2] | ZHU En-yang, LI Xiao-qiang, ZHU Jian-ming. Three-dimensional UH model for structured soils considering bonding[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2200-2207. DOI: 10.11779/CJGE201812006 |
[3] | YAO Yang-ping, FANG Yu-fei. Properties of negative creep and its constitutive model for soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1759-1765. DOI: 10.11779/CJGE201810001 |
[4] | ZHANG Fu-guang, JIANG Ming-jing. Three-dimensional constitutive model for cemented sands based on micro-mechanism of bond degradation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1424-1432. DOI: 10.11779/CJGE201808007 |
[5] | WANG Lei, ZHU Bin, LI Jun-chao, CHEN Yun-min. Two-phase constitutive model for fiber-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1326-1333. DOI: 10.11779/CJGE201407017 |
[6] | JIANG Ming-jing, HU Hai-jun. Numerical analysis of degradation evolution of structured loess under loading, unloading and wetting by discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 989-997. DOI: 10.11779/CJGE201406001 |
[7] | JIANG Ming-jing, ZHANG Fu-guang, SUN Yu-gang. Numerical evaluation of degradation evolutions in three constitutive models for bonded geomaterials by distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 805-813. |
[8] | MI Zhan-kuan, LI Guo-ying, CHEN Sheng-shui. Constitutive model for coarse granular materials based on breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1801-1811. |
[9] | Degrading deformation of rockfill materials and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1). |
[10] | JIANG Mingjing. Main features of future constitutive models for granular materials in penetration analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1281-1288. |
1. |
姬欧鸣,胡雪飞,刘长明,晏祥智. 循环荷载饱和风积土累积塑性变形模型. 土木工程与管理学报. 2021(02): 152-159 .
![]() |