• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. DOI: 10.11779/CJGE201601018
Citation: CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 163-169. DOI: 10.11779/CJGE201601018

Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils

More Information
  • Received Date: May 17, 2015
  • Published Date: January 19, 2016
  • Chinese Dynamic penetration test (DPT) is an in-situ testing with the advantages of simple apparatus, economical test, and continuous data acquisition, especially for measuring bearing capacity, relative density and classification of gravelly soils. The typical gravelly soils sites are selected from the Chengdu Plain in China and the river bed of Echo dam downstream in the U.S., and China-US dynamic penetration testing and hammer energy measurements are conducted. The results show that: (1) The average of energy transfer ratios is 90% and the standard deviation is 7.7%, derived from 1321 energy time-history records, tested at 3 gravelly soils sites in the Chengdu Plain. The deviation is greatly affected by operation procedure. (2) The DPT test depth, using US drill rig assembling with Chinese DPT cone, can reach as much as 20 meters for assessing soil properties. (3) The average of energy transfer ratios is around 74% and the standard deviation is 8.7%, derived from 1438 energy time-history records, tested at 2 gravelly soils sites on the river bed of Echo dam downstream. The deviation is greatly affected by friction of drill rod and rope. (4) The DPT blows should be corrected according to different hammer energies. The proposed evaluation method for gravelly soils liquefaction, developed from the DPT database of gravelly soils liquefied during 2008 Wenchuan Earthquake, can be applicable for worldwide use.
  • [1]
    地球科学大词典编委会. 地球科学大词典[M]. 北京: 地质出版社, 2005. (Earth Science Dictionary Committee. Earth science dictionary[M]. Beijing: Geological Publishing House, 2005. (in Chinese))
    [2]
    曹振中, 徐学燕, 袁晓铭. 国内外液化砂砾土土性对比分析[J]. 防灾减灾工程学报, 2012, 32(4): 481-487. (CAO Zhen-zhong, XU Xue-yan, YUAN Xiao-ming. Characteristics comparison of gravels that liquefied following the 2008 wenchuan and previous earthquakes[J]. J. of Disaster Prevention and Mitigation Engeneering, 2012, 32(4): 481-487. (in Chinese))
    [3]
    CAO Z, YOUD T L, YUAN X. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms=8.0[J]. Soil Dynamics and Earthquake Engineering, Elsevier, 2011(31): 1132-1143.
    [4]
    TSUCHIDA H. Prediction and countermeasure against the liquefaction in sand deposits[C]// Seminar in the Port and Harbor Research Institute. Yokosuka: 1970: 1-33.
    [5]
    汪闻韶, 常亚屏, 左秀泓. 饱和砂砾料在振动和往返加荷下的液化特性[C]// 水利水电科学研究院论文集(第23集). 北京: 水利出版社, 1986: 195-203. (WANG Wen-shao, CHANG Ya-ping, ZOU Xiu-hong. Liquefaction characteristics of saturated sand-gravels under vibration and cyclic loading[C]// Volume 23 collected papers of China Institute of Water Resources and Hydropower Research. Beijing: China Waterpower Press, 1986: 195-203. (in Chinese))
    [6]
    KAZAMA M, SENTO N, OMURA H, et al. Liquefaction and settlement of reclaimed ground with gravelly decomposed granite soil[J]. Soil Foundation, 2003, 43(3): 57-72.
    [7]
    EVANS Mark D, ZHOU Sheng-ping. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    [8]
    WONG R T, SEED H B, CHAN C K. Liquefaction of gravelly soils under cyclic loading conditions[R]. California: University of California, 1974.
    [9]
    SIDDIQI F H. Strength evaluation of cohesionless soils with oversized particles[D]. Davis: University of California at Davis, 1984.
    [10]
    KOKUSHO T, TANAKA Y. Dynamic properties of gravel layers investigated by in- situ freezing sampling[C]// Geotech Spec Publ No56. NewYork: ASCE, 1994: 121-140.
    [11]
    KOKUSHO T, HARA T, HIRAOKA R. Undrained shear strength of granular soils with different particle gradations[J]. J Geotechnical and Geoenvironment Engineering, 2004, 130(6): 621-629.
    [12]
    袁晓铭, 曹振中. 砂砾土液化判别的基本方法及计算公式[J]. 岩土工程学报, 2011, 33(4): 509-519. (YUAN X, CAO Z. Fundamental method and formula for evaluation of liquefaction of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
    [13]
    CAO Z, YOUD T, YUAN X. Chinese dynamic penetration test for liquefaction evaluation in gravelly soils[J]. J of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(8): 1320-1333.
    [14]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
    [15]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
  • Related Articles

    [1]ZHONG Zilan, NI Bo, SHI Yuebo, ZHANG Chengming, SHEN Jiaxu, DU Xiuli. Response analysis of subway station and optimization of seismic intensity measures based on fully connected neural network[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 567-577. DOI: 10.11779/CJGE20221448
    [2]DENG Zhiping, ZHONG Min, PAN Min, ZHENG Kehong, NIU Jingtai, JIANG Shuihua. Slope reliability analysis considering spatial variability of parameters based on efficient surrogate model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 273-281. DOI: 10.11779/CJGE20221338
    [3]YU Haitao, WANG Zhikun. Efficient hybrid simulation method for seismic response analysis of underground structures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 45-53. DOI: 10.11779/CJGE20221240
    [4]DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019
    [5]ZHEN Libin, SHI Yuebo, ZHONG Zilan, DU Xiuli, LUO Wenlin. Efficient seismic fragility of underground structures using endurance time analysis method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 777-784. DOI: 10.11779/CJGE20220188
    [6]YAN Chang-bin, JIANG Xiao-di, LIU Zhang-heng, YANG Ji-hua, MIAO Dong. Rock-breaking efficiency of TBM based on particle-size distribution of rock detritus[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 466-474. DOI: 10.11779/CJGE201903008
    [7]BAO Shu-feng, LOU Yan, DONG Zhi-liang, MO Hai-hong, CHEN Ping-shan, ZHOU Rui-bo. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1350-1359. DOI: 10.11779/CJGE201407020
    [8]WANG Guo-bo, XU Hai-qing, YU Yan-li. Effect of group cavities on seismic response of adjacent overlapping shield tunnels and site soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 968-973.
    [9]CHENG Cuiyun, QIAN Xin, YANG Jue, LI Lei, WAN Yuqiu, YANG Meng. Effectiveness evaluation of emergency plans for dam break[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1729-1733.
    [10]DU Jianguo, LIN Gao. Effect of foundation stiffness and anisotropy on the seismic response of concrete dams[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 819-823.
  • Cited by

    Periodical cited type(9)

    1. 刘明芳,陈明辉,吴振元,龙桂华. 基于流固耦合的双线盾构隧道施工诱发地表沉降分析. 湖南文理学院学报(自然科学版). 2024(01): 67-75 .
    2. 张耀星,梁连,黄明. 盾构隧道与箱涵交叠下穿铁路开挖面稳定性上限分析. 公路工程. 2024(06): 64-71 .
    3. 李兴龙,蔺文帅. 复杂地质条件下矩形顶管下穿管线影响分析. 高速铁路技术. 2023(02): 94-100 .
    4. 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验. 隧道与地下工程灾害防治. 2022(03): 67-76 .
    5. 童建军,刘大刚,张霄,王志龙,赵思光,李佳旺. 大断面隧道机械化施工支护结构设计方法——以郑万高铁湖北段隧道为例. 隧道建设(中英文). 2021(01): 116-125 .
    6. 薛卫新. 剪刀叉匝道在城市地下快速路中的应用. 交通与运输. 2021(03): 32-36 .
    7. 米博,项彦勇. 含黏粒砂土地层浅埋盾构隧道开挖渗流稳定性试验. 哈尔滨工业大学学报. 2021(11): 59-65 .
    8. 孙廉威,方宇翔,沈雯. 下穿既有管线盾构开挖面失稳机制分析. 地下空间与工程学报. 2020(S1): 278-284 .
    9. 田树坤. 滇中红层地质大断面浅埋隧道的工法适应性研究. 公路交通科技(应用技术版). 2019(09): 229-233 .

    Other cited types(21)

Catalog

    Article views PDF downloads Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return