• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHENG Fei, LIU Jiang-ping, MAO Mao, WANG Jing, SONG Xian-hai. Self-adapting control parameters-based differential evolution algorithm for inversion of Rayleigh wave dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 147-154. DOI: 10.11779/CJGE201601016
Citation: CHENG Fei, LIU Jiang-ping, MAO Mao, WANG Jing, SONG Xian-hai. Self-adapting control parameters-based differential evolution algorithm for inversion of Rayleigh wave dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 147-154. DOI: 10.11779/CJGE201601016

Self-adapting control parameters-based differential evolution algorithm for inversion of Rayleigh wave dispersion curves

More Information
  • Received Date: January 04, 2015
  • Published Date: January 19, 2016
  • The differential evolution algorithm has been widely used in geophysical inversion including inversion of Rayleigh wave dispersion curves. At present the traditional differential evolution algorithm is sensitive to the control parameters set in the process of inversion of Rayleigh wave dispersion curves, and improper selection of the parameters will make the inversion results untrue. Based on the traditional differential evolution algorithm applied in the inversion of Rayleigh wave dispersion curves, the two control parameters, namely crossover probability and zoom factor, are directly coded to individuals, and the differential evolution algorithm with self-adapting control parameters in the inversion of high-frequency Rayleigh wave dispersion curves is adopted to obtain near-surface shear -wave velocity profiles. The results from both synthetic and actual field data demonstrate that: (1) The proposed algorithm not only inherits the simple and efficient features of standard differential evelution algorithm, but also can automatically pick proper parameter values for correct inversion iteration in the inversion of dispersion curves, without relying on the crossover control parameter and amplification factor of the difference vector. (2) The objective function in the proposed algorithm is proved to be able to rapidly converge to the global optimization solution. (3) The wide probability distribution of model parameters, which means the proposed algorithm can define the scope of true-value and find the global minimum even in an extensive search space and guarantee the reliability of inversion results. The proposed algorithm can be applied effectively in the inversion of Rayleigh wave dispersion curves.
  • [1]
    STRUTT J W. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society. 1885, 17: 1-4.
    [2]
    XIA J H, MILLER R D, PARK C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 1999, 64(3): 691-700.
    [3]
    MILLER R D, XIA J H, PARK C B, et al. Multichannel analysis of surface waves to map bedrock[J]. The Leading Edge, 1999, 18(12): 1392-1396.
    [4]
    XIA J H, CHEN C, LI P H, et al. Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique[J]. Géotechnique, 2004, 54(1): 17-27.
    [5]
    刘江平, 罗银河, 何伟兵. 相邻道瞬态瑞雷面波法与压实度检测[J]. 岩土工程学报, 2009, 31(11): 1652-1659.(LIU Jiang-ping, LUO Yin-he, HE Wei-bing. Method of neighboring trace transient Rayleigh wave and its application in compactness inspection[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1652-1659. (in Chinese))
    [6]
    郑立宁, 谢 强, 冯治国, 等. 瞬态瑞雷面波法岩溶路基注浆质量检测现场试验研究[J]. 岩土工程学报, 2011, 33(12): 1934-1937. (ZHENG Li-ning, XIE Qiang, FENG Zhi-guo, et al. Field tests on grouting effect of karst roadbed based on transient Rayleigh wave method[J]. Chinese Journal of Geotechnical Engineering, 2011, 32(12): 1934-1937. (in Chinese))
    [7]
    XIA J H, MILLER R D, PARK C B, et al. Determining Q of near-surface materials from Rayleigh waves[J]. Journal of Applied Geophysics, 2002, 51(2): 121-129.
    [8]
    LIN C, CHANG C, CHANG T. The use of MASW method in the assessment of soil liquefaction potential[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(9): 689-698.
    [9]
    YAMANAKA H, ISHIDA H. Application of genetic algorithms to an inversion of surface-wave dispersion data[J]. Bulletin of the Seismological Society of America, 1996, 86(2): 436-444.
    [10]
    BEATY K S, SCHMITT D R, SACCHI M. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 2002, 151(2): 622-631.
    [11]
    SHIRAZI H, ABDALLAH I, NAZARIAN S. Developing artificial neural network models to automate spectral analysis of surface wave method in pavements[J]. Journal of Materials in Civil Engineering, 2009, 21(12): 722-729.
    [12]
    SONG X H, GU H M, ZHANG X Q, et al. Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves[J]. Computers & Geosciences, 2008, 34(6): 611-624.
    [13]
    SONG X H, TANG L, LV X C, et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2012, 84: 1-13.
    [14]
    付代光, 刘江平, 周黎明, 等. 基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究[J]. 岩土工程学报, 2015, 37(2): 321-329. (FU Dai-guang, LIU Jiang-ping, ZHOU Li-ming, et al. Inversion of multimode Rayleigh-wave dispersion curves of soft interlayer based on Bayesian theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 321-329. (in Chinese))
    [15]
    STORN R, PRICE K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R]. Berkeley: International Computer Science Institute Berkeley, 1995.
    [16]
    STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
    [17]
    CHENG F, LIU J P, YANG W H, et al. Differential evolution algorithm for inversion of rayleigh wave dispersion curves[C]// Proceedings of the 6th International Conference on Environmental and Engineering. Xi'an, 2014: 261-266.
    [18]
    SONG X H, LI L, ZHANG X Q, et al. Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2014, 109: 47-61.
    [19]
    BREST J, GREINER S, BOŠKOVIĆ, B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. Evolutionary Computation, IEEE Transactions on, 2006, 10(6): 646-657.
    [20]
    SCHWAB F, KNOPOFF L. Surface-wave dispersion computations[J]. Bulletin of the Seismological Society of America, 1970, 60(2): 321-344.
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views (341) PDF downloads (336) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return