• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Man, XIE Mo-wen, WANG Li-wei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67. DOI: 10.11779/CJGE201601005
Citation: HU Man, XIE Mo-wen, WANG Li-wei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67. DOI: 10.11779/CJGE201601005

SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model

More Information
  • Received Date: December 02, 2014
  • Published Date: January 19, 2016
  • Modeling of post-failure flow of landslides is one of the important approaches that can be used to simulate landslide flow development and predict the landslide hazard zone. A Smoothed particle hydrodynamics (SPH) model based on the constitution of elastic-plastic constitutive mechanics for soil is developed for simulating the behavior of a class of geo-materials. The SPH soil model considers the plastic behavior of the materials, and hence it is very important for more accurate and realistic simulations of geo-materials of soil type. The implemented material laws in the SPH soil code include classical elastic-plasticity with a linear elastic part, and different applicable yield surfaces with non-associated flow rules. In order to apply the SPH method to actual landslide modeling, the geographic information system (GIS) is utilized to generate site-specific models. Thus a C# code is developed to generate the particles of a given landslide site, which produces realistic particle mass and actual complicated boundaries for the SPH soil model. With GIS enabled, complex topography and irregular boundary can be accurately and easily generated. To improve the accuracy of such a complicated landslide simulation, a modified approach is proposed to implement the complex topography representation of landslide mass and the effective treatments of the irregular and complicated boundaries generated from the GIS. The SPH soil code is applied to the well-known Daguangbao landslide triggered by Wenchuan Earthquake in 2008. The topographies after failure are compared with those obtained from field collected data, and good agreement is found.
  • [1]
    DUNCAN J M. State of the art: limit equilibrium and finite element analysis of slopes[J]. J Geotech Eng, 1996, 122: 577-596.
    [2]
    HAMMOURI N A, MALKAWI A I H, YAMIN M M A. Stability analysis of slopes using the finite element method and limiting equilibrium approach[J]. Bull EngGeol Environ, 2008, 67: 471-478.
    [3]
    SCAVIA C. A method for the study of crack propagation in rock structures[J]. Géotechnique, 1995, 45(3): 447-463.
    [4]
    EBERHARDT E, STEAD D, COGGAN J S. Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1): 69-87.
    [5]
    MISHRA B K, RAJAMANI R K. The discrete element method for the simulation of ball mills[J]. Applied Mathematical Modelling, 1992, 16(11): 598-604.
    [6]
    SHI G H, GOODMAN R E. Discontinuous deformation analysis[C]// 25th US Symp on Rock Mech. Evanston, 1984.
    [7]
    BELYTSCHKO T, LU Y Y, GU L. Element‐free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256.
    [8]
    CHOPARD B, DROZ M. Cellular automata modeling of physical systems[J]. Cambridge: Cambridge University Press, 1998.
    [9]
    LIU G R, LIU M B. Smoothed particle hydrodynamics: a meshfree particle method[M]. World Scientific, 2003.
    [10]
    DOUGALL S, HUNGR O. A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 2004, 41(6): 1084-1097.
    [11]
    PASTOR M, HADDAD B, SORBINO G, et al. A depth‐integrated, coupled SPH model for flow-like landslides and related phenomena[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(2): 143-172.
    [12]
    HADDAD B, PASTOR M, PALACIOS D, et al. A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): Sensitivity analysis and runout simulation[J]. Engineering Geology, 2010, 114(3): 312-329.
    [13]
    HUANG Y, ZHANG W, XU Q, et al. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 2012, 9(2): 275-283.
    [14]
    SAKAI H, MAEDA K. Seepage failure and erosion mechanism of granular material with evolution of air bubbles using SPH[C]// Powders and Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media. Colorado, 2009: 1001-1004.
    [15]
    BUI H H, FUKAGAWA R, SAKO K, et al. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1537-1570.
    [16]
    CHEN W F, MIZUNO E. Nonlinear analysis in soil mechanics[M]// Developments in Geotechnical Engineering, Amsterdam: Elsevier, 1990: 672.
    [17]
    MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399-406.
    [18]
    LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain lagrangian hydrodynamics: a three- dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1): 67-75.
    [19]
    MORRIS J P, FOX P J, ZHU Y. Modeling low reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226.
    [20]
    LIU M B, SHAO J R, CHANG J. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China Technological Sciences, 2012, 55(1): 244-254.
    [21]
    MONAGHAN J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543-574.
    [22]
    LATTANZIO J C, MONAGHAN J J, PONGRACIC H, et al. Controlling penetration[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(2): 591-598.
    [23]
    MONAGHAN J J. On the problem of penetration in particle methods[J]. Journal of Computational physics, 1989, 82(1): 1-15.
    [24]
    HUANG R, PEI X, FAN X, et al. The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China[J]. Landslides. 2012, 9(1): 131-142.
    [25]
    ZHANG Y, CHEN G, ZHENG L, et al. Numerical analysis of the largest landslide induced by the Wenchuan Earthquake, May 12, 2008 Using DDA[C]// Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu, Japan, 2012. 617-626.
  • Cited by

    Periodical cited type(8)

    1. 王怀强,李孝波,王天虎,席书衡,宣雨童. 基于岩土竖向台阵开展场地地震反应研究的若干进展. 地震工程与工程振动. 2025(02): 50-63 .
    2. 范宏飞,王彦臻,陈炜昀,陈国兴,赵凯. 水平成层海床场地非线性地震反应的流-固弱耦合分析. 振动工程学报. 2025(04): 849-859 .
    3. 郭云峰. 岩土勘察中地震效应问题的研究. 科技与创新. 2023(13): 117-119+122 .
    4. 王永光,梁建文,巴振宁. 基于修正阻尼的土体非线性模型及其在Abaqus中的实现. 岩土力学. 2023(08): 2287-2296 .
    5. 陈国兴,夏高旭,王彦臻,金丹丹. 琼州海峡海床地震反应特性的一维非线性分析. 工程力学. 2022(05): 75-85 .
    6. 赵凯,夏高旭,王彦臻,赵丁凤,庄海洋,陈国兴. 土–地下结构相互作用的三维弱耦合有效应力分析法. 岩土工程学报. 2022(05): 861-869 . 本站查看
    7. 阮滨,吉瀚文,王苏阳,贺鸿俊,苗雨. 基于台阵观测的基岩地震动入射波分离方法及数值验证. 岩土力学. 2022(09): 2615-2623+2642 .
    8. 陈伟庚,刘洋,王栋,岳茂,张良. 西南山区铁路沿线反倾岩质边坡地震动力响应振动台试验研究. 铁道建筑. 2021(04): 93-96 .

    Other cited types(8)

Catalog

    Article views (679) PDF downloads (806) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return