• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Xiang, CHEN Jing-jian. Numerical analysis of interactive behavior between pile and seabed soil under wave load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 217-221. DOI: 10.11779/CJGE2015S2041
Citation: HU Xiang, CHEN Jing-jian. Numerical analysis of interactive behavior between pile and seabed soil under wave load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 217-221. DOI: 10.11779/CJGE2015S2041

Numerical analysis of interactive behavior between pile and seabed soil under wave load

More Information
  • Received Date: March 25, 2015
  • Published Date: July 24, 2015
  • An FEM model for a single pile embedded in a saturated seabed is proposed to study the interactive behavior between pile and seabed soil. Fluid-soil coupling and contact behavior on interface is considered, and the quasi-static method is adopted to simulate the crested short wave-induced load on seabed surface. Based on the numerical results, responses of pore water pressure and stress seabed soils under the wave load are investigated, and the deformation and internal force of the single pile are discussed. Two different methods to simulate the pile-soil interface are discussed with a comparison to the greenfield seabed model. The results show that the pore water pressure increases obviously near the bottom of pile, and the lateral displacement of pile is mainly affected by soil. Moreover, the pore water pressure and stress are overestimated by the pile-soil coupled model, and the stress concentration at bottom of pile is more obvious than that by the pile-soil contact model.
  • [1]
    BEA R G, WRIGHT S G. Wave-induced slides in south pass block 70, Mississippi Delta[J]. Journal of Geotechnical Engineering, 1983, 109(4): 619-644.
    [2]
    赵 刚. 胜利作业三号平台“9.7”倾斜事故分析[J]. 现代职业安全, 2011(7): 100-102. (ZHAO Gang. Case study about ‘9.7’ inclination of the Shengli No.3 work platform[J]. Mordern Occupation Safety, 2011(7): 100-102. (in Chinese))
    [3]
    郑东生. 波浪和海床交互作用的多孔介质理论[M]. 上海:上海交通大学出版社, 2013. (JENG Dong-sheng. Porous Models for Wave-seabed Interactions[M]. Shanghai: Shanghai JiaoTong University Press, 2013. (in Chinese))
    [4]
    YAMAMOTO. On the response of a pore-elastic bed to water waves[J]. Journal of Fluid Mechanics, 1978, 87(1): 193-206.
    [5]
    JENG D S, HSU J R C. Wave-induced soil response in a nearly saturated seabed of finite thickness[J]. Géotechnique, 1996, 46(3): 427-440.
    [6]
    JENG D S. Wave-induced seafloor dynamics[J]. Applied Mechanics Review, 2003, 56(4): 407-429.
    [7]
    LU J F, JENG D S. Poroelastic model for pile-soil interaction in a half-space porous medium due to seismic waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(1): 1-41.
    [8]
    BHATTACHARYA S. Experimental validation of soil-structure interaction of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5): 805-816
    [9]
    LI X J, GAO F P,YANG B. Wave-induced pore pressure and soil liquefaction around pile foundation[J]. International Journal of Offshore and Polar Engineering, 2011, 21(3): 233-239.
    [10]
    YANG B, GAO F P. Experimental study on vortex-induced vibrations of submarine pipeline near seabed boundary in ocean currents[J]. China Ocean Engineering, 2006, 20(1): 113-121.
    [11]
    HSU J R C, JENG D S. Short-crested wave-induced soil response in a porous seabed of infinite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(8): 553-576.
    [12]
    HSU J R C, JENG D S. Oscillatory soil response and liquefaction in an unsaturated layered seabed[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(12): 825-849.
    [13]
    ZIENKIEWICZ O C. Drained, undrained, consolidating and dynamic behaviour assumptions in soils[J]. Géotechnique, 1980, 30(4): 385-395.
    [14]
    JENG D S, CHA D H. Effects of dynamic soil behavior and save non-linearity on the wave-induced pore pressure and effective stresses in porous seabed[J]. Ocean Engineering, 2003, 30: 2065-2089
    [15]
    HSU J R C. Third-order approximation to short-crested waves[J]. Journal of Fluid Mechanics, 1979, 90(1): 179-196.
    [16]
    GATMIRI B. A simplified finite element analysis of wave-induced effective stress and pore pressures in permeable sea beds[J]. Géotechnique, 1990, 40(1): 15-30.
  • Related Articles

    [1]LIU Shuang, LIU Hanlong, XIAO Yang. Soil-water characteristic curve considering temperature and void ratio under capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 877-886. DOI: 10.11779/CJGE20231253
    [2]GAO You, SUN De-an, ZHANG Jun-ran, LUO Ting. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191-2196. DOI: 10.11779/CJGE201912003
    [3]YE Yun-xue, ZOU Wei-lie, HAN Zhong, LIU Xiao-wen. General model for relationship between void ratio and matric suction in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 927-933. DOI: 10.11779/CJGE201905016
    [4]YE Yun-xue, ZOU Wei-lie, YUAN Fei, LIU Jia-guo. Predicating soil-water characteristic curves of soils with different initial void ratios based on a pedotransfer function[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2305-2311. DOI: 10.11779/CJGE201812019
    [5]WU Qi, CHEN Guo-xing, ZHU Yu-meng, ZHOU Zheng-long, ZHOU Yan-guo. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019
    [6]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
    [7]ZOU Wei-lie, WANG Xie-qun, LUO Fang-de, ZHANG Jun-feng, YE Yun-xue, HU Zhong-wei. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1711-1717. DOI: 10.11779/CJGE201709020
    [8]MA Shao-kun, HUANG Yan-zhen, CHEN Xin, JIANG Jie, SHAO Yu. Influence of excavation on adjacent rigid-flexible piles considering change of void ratio coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 140-145. DOI: 10.11779/CJGE2014S2024
    [9]CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004
    [10]MA Shao-kun<sup>1, 2, 3</sup>, SHAO Yu<sup>2, 3</sup>, HUANG Yan-zhen<sup>2, 3</sup>. Deformation of deep foundation pits due to excavation considering change of void ratio and permeability coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 940-944.
  • Cited by

    Periodical cited type(27)

    1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 .
    2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 .
    3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 .
    4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 .
    5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 .
    6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
    7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 .
    8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 .
    9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 .
    10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 .
    11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
    12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 .
    13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 .
    14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 .
    15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 .
    16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
    17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 .
    18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 .
    19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 .
    20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
    21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 .
    22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 .
    23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 .
    24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 .
    25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 .
    26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
    27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 .

    Other cited types(47)

Catalog

    Article views (287) PDF downloads (320) Cited by(74)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return