• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Li-sheng, WU Shu-guang. Calculation of earth pressure on baffle of cantilever anti-slide piles based on soil arching effects[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 153-157. DOI: 10.11779/CJGE2015S2030
Citation: LIU Li-sheng, WU Shu-guang. Calculation of earth pressure on baffle of cantilever anti-slide piles based on soil arching effects[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 153-157. DOI: 10.11779/CJGE2015S2030

Calculation of earth pressure on baffle of cantilever anti-slide piles based on soil arching effects

More Information
  • Received Date: March 25, 2015
  • Published Date: July 24, 2015
  • The soil arching effect plays an important role in cantilever anti-slide piles. By assuming the reasonable arching axis behind the anti-slide piles, a soil equilibrium equation is established to get the maximum height of the soil arching. Then an differential equation is deduced to calculate the earth pressure on baffle of the cantilever anti-slide piles. The results are compared with those by the formula of local regulations in Chongqing and Coublomb's earth pressure. They are checked using the model tests and good agreement is achieved. The results may provide a basis for the design of baffle of cantilever anti-slide piles in Southwest China.
  • [1]
    TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]// Proceedings of 1st Conference of Soil Mechanics and Foundation Engineering. Boston, 1936: 307-316.
    [2]
    代 军, 胡岱文, 吴曙光. 桩锚支挡结构体系挡板土压力试验研究[J]. 重庆建筑大学学报, 2001, 23(4): 48-54. (DAI Jun, HU Dai-wen, WU Shu-guang. Experimental study of soil stress on the holding sheet of pile-anchor holding-block structure system[J]. Journal of Chonqing Jianzhu University, 2001, 23(4): 48-54.(in Chinese)
    [3]
    HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318.
    [4]
    SHUBHRA G, PATRA N R. Effect of arching on active earth pressure for rigid retaining walls considering translation mode[J]. Int J Geomech, 2008(2): 123-133.
    [5]
    PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effect[J]. Géotechnique, 2003, 53(7): 643-645.
    [6]
    刘孝平, 周义武, 钟圣斌. 关于空腹式无铰拱桥的合理拱轴线问题[J]. 湖南大学学报, 1983, 10(4): 48-55. (LIU Xiao-ping, ZHOU Yi-wu, ZHONG Sheng-bin. On the rational curve for the axis of spandrel arches[J]. Journal of Hunan University, 1983, 10(4): 48-55.(in Chinese)
    [7]
    魏业清, 张林洪. 考虑土拱效应的桩板墙挡板设计[J].科学技术与工程, 2008, 8(21): 5964-5967. (WEI Ye-qing, ZHANG Lin-hong. Design of sheet-pile wall breast boards on arching effect[J]. Science Technology and Engineering, 2008, 8(21): 5964-5967. (in Chinese))
    [8]
    王 杰. 考虑土拱效应的挡墙土压力研究[D]. 杭州: 浙江大学, 2014. (WANG Jie. Study of earth pressure on retaining walls on the basis of soil arching effect[D]. Hangzhou: Zhejiang University, 2014. (in Chinese))
    [9]
    叶晓明. 柱板结构挡土墙板上的土压力计算方法[J]. 地下空间, 1999, 19(2): 142-146. (YE Xiao-ming. The calculation method of retaining wall plate in column-slab structure[J]. Junderground, 1999, 19(2): 142-146. (in Chinese))
    [10]
    杨明辉, 汪罗成, 赵明华. 考虑土拱效应的双排抗滑桩桩侧土压力计算[J].公路交通科技, 2011, 28(10): 12-39. (YANG Ming-hui, WANG Luo-cheng, ZHAO Minghua. Calculation of soil pressure against double-row anti-slide piles considering soil arching effect[J]. Journal of Highway and Transportation Research and Development, 2011, 28(10): 12-39. (in Chinese))
    [11]
    吴 明, 彭建兵, 徐 平, 等. 考虑土拱效应的挡墙后土压力研究[J].工程力学, 2011, 28(11): 89-95. (WU Ming, PENG Jian-bing, XU Ping, et al. Study on earth pressure against rigid retaining walls considering soil arching effects[J]. Engineering Mechanics, 2011, 28(11): 89-95. (in Chinese))
    [12]
    DB50/5029—2004地质灾害防治工程设计规范[S]. 2004. (DB50/5029—2004 Code for design of geological disaster prevention project[S]. 2004. (in Chinese))
    [13]
    叶代成. 抗滑桩桩间土拱效应及合理桩间距的研究[J]. 土工基础, 2008, 22(4): 75-79. (YE Dai-cheng. The reseach of the soil arching effective between anti-sliding piles and suitable pile spacing[J]. Soil Eng. and Foundation, 2008, 22(4): 75-79. (in Chinese))
    [14]
    张永兴, 董 捷, 黄治云. 合理间距条件悬臂式抗滑桩三维土拱效应试验研究[J]. 岩土工程学报, 2009, 31(12): 76-83. (ZHANG Yong-xing, DONG Jie, HUANG Zhi-yun. Experimental investigation on three-dimensional soil arching effect between adjacent cantilever anti-slide piles with rational spacing[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 76-83. (in Chinese))
  • Related Articles

    [1]HUANG Jue-hao, CHEN Jian, KE Wen-hui, ZHONG Yu, QIU Yue-feng. Coupling effects of bidirectional cyclic loading and loading frequency on pore water pressure of saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 71-74. DOI: 10.11779/CJGE2017S2018
    [2]WANG Ying-nan, CHEN Xi, WANG Dong-yong, YU Yu-zhen. Simplified soil water characteristic surface (SWCS) model and its applications to seepage analysis of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 104-109. DOI: 10.11779/CJGE2016S2017
    [3]ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
    [4]ZHOU Nianqing, TANG Yiqun, WANG Jianxiu, ZHANG Xi, HONG Jun. Response characteristics of pore pressure in saturated soft clay to the metro vibration loading[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2149-2152.
    [5]GUO Ying, LIU Yanhua, LUAN Maotian, XU Chengshun, HE Yang. Energy-based model of vibration-induced pore water pressure build-up of saturated loose sand under complex stress condition[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1380-1385.
    [6]SUN Rui, YUAN Xiaoming. Simplified incremental formula for estimating pore water pressure of saturated sands under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1021-1025.
    [7]Li Wenping. Variation of pore water pressure and volume strain of saturated clayey soil during high pressure compression test[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 666-669.
    [8]Yan Lin, Li Shihai, Liu Yigang. A laboratory study on surface settlement of saturated sand caused by blasting[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 50-53.
    [9]Shou Tsien I, Fu Shengcong. Pore water Pressure in Normally Consolidated Saturated Clays[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(1): 1-7.
    [10]Li Wenyang, Liu Huishan. Influence of Pore Water Pressure on Shear Modulus and Damping Ratio of Saturated Sands[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(4): 56-67.
  • Cited by

    Periodical cited type(37)

    1. 张昌桔,姚言,应宏伟,李冰河. 粉土地层双线平行顶管地面沉降及注浆压力数值研究. 地基处理. 2025(01): 60-68 .
    2. 王伟志,刘文壮,李朝煌,徐永福. 软土中浅埋顶管施工变形监测分析. 徐州工程学院学报(自然科学版). 2025(01): 1-6 .
    3. 张艳辉,纪海霞,程树辉,李张卿. 高密度建成区大型雨水管涵设计要点分析. 市政技术. 2025(04): 197-203 .
    4. 王开军,张伟,王玮鹏,窦保洋,徐荣超. 超浅覆土大断面矩形顶管近距离双线施工地表沉降规律及加固效果评价. 地质与勘探. 2024(01): 121-131 .
    5. 付增,范晓冬,魏旭鹏,李鹏,余长益. 基于结构分割法的顶管暗挖地铁站建造技术. 都市快轨交通. 2024(04): 88-95 .
    6. 万海峰,沈青松. 浅埋矩形顶管整体背土效应理论计算与分析. 市政技术. 2024(09): 129-134 .
    7. 马晓宾,苏栋,吴永照,吴炯,阳文胜,王雷,陈湘生. 浅埋矩形顶管背土效应全过程理论分析模型. 福州大学学报(自然科学版). 2024(05): 569-576 .
    8. 王虎,李栋,陈雪华,汪旭. 矩形顶管技术的应用与发展. 施工技术(中英文). 2023(01): 26-32 .
    9. 戢鸿鑫,刘跃军,张强,刘志寅,安峻彤,王耀正. 浅埋大断面矩形顶管下穿京杭大运河施工关键技术研究. 施工技术(中英文). 2023(07): 39-45 .
    10. 苏栋,吴炯,王雷,陈湘生,孙波,朱斌. 浅埋超大断面矩形顶管顶进对既有箱涵的影响. 广西大学学报(自然科学版). 2023(01): 1-9 .
    11. 黄建华,叶剑波. 大断面矩形顶管重力锚固基础力学特性分析. 人民长江. 2023(06): 140-146 .
    12. 张双茁,高桂庆,赖金星,张健伟,邱军领. MJS不同加固方式对降低顶管施工影响的效果分析. 建筑科学与工程学报. 2023(05): 183-191 .
    13. 甄亮,张显裕,李晓军. 浅埋矩形顶管整体背土效应判别方法应用与处理措施. 现代隧道技术. 2022(02): 167-171+181 .
    14. 兰彬,张鹏,张云龙,闫雪峰. 矩形顶管管周差异摩阻力对地层纵向水平位移的影响. 地质科技通报. 2022(03): 215-221 .
    15. 贾连辉,谌文涛,范磊,袁征. 特大断面矩形隧道掘进机关键系统设计与应用——结合嘉兴市长水路下穿南湖大道项目. 隧道建设(中英文). 2022(05): 917-928 .
    16. 马鹏,岛田英树,马保松,黄胜,周浩. 矩形顶管关键技术研究现状及发展趋势探讨. 隧道建设(中英文). 2022(10): 1677-1692 .
    17. 高浩,吴炯,阳文胜,苏栋,吴永照,陈湘生. 隔离墙对顶管顶进背土效应的抑制作用研究. 现代隧道技术. 2022(S1): 1120-1126 .
    18. 桂林,任睿祺,史培新,刘维. 浅埋矩形顶管施工引起的地层沉降变化规律. 城市轨道交通研究. 2022(12): 94-100 .
    19. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
    20. 赵李勇. 浅埋矩形顶管施工顶推力动态监测分析. 建筑机械化. 2021(03): 13-16 .
    21. 陈志. 软弱地层浅埋矩形顶管沉降控制技术研究. 铁道建筑技术. 2021(08): 144-148 .
    22. 许有俊,黄正东,张旭,张朝,康佳旺,周薇. 大断面土压平衡矩形顶管多刀盘实测扭矩参数研究. 现代隧道技术. 2021(05): 96-103 .
    23. 李启旭,龚建伍,霍震. 浅埋矩形顶管施工地表沉降特性试验研究. 土工基础. 2021(06): 801-804 .
    24. 薛青松. 矩形顶管上穿地铁隧道施工对地表变形影响研究. 山西建筑. 2020(15): 9-11 .
    25. 李育发,李永江. 包头地下综合管廊矩形顶管施工关键技术及地表变形特征. 内蒙古科技大学学报. 2020(03): 289-293+299 .
    26. 薛广记,贾连辉,范磊,谌文涛. 大断面矩形掘进机土压平衡控制技术探究. 建筑机械化. 2020(10): 41-45 .
    27. 程鹏,高毅,于少辉,李洋. 结构分割转换工法结构体系安全性分析. 隧道建设(中英文). 2019(03): 435-443 .
    28. 苏明浩,高毅,程鹏. 关于结构分割转换工法不同分割方式的探讨. 隧道建设(中英文). 2019(03): 444-450 .
    29. 贺善宁,豆小天,赵李勇,崔现慧,王晋波,宝青峰. 浅埋矩形顶管群密贴施工的顶推力分析研究. 隧道建设(中英文). 2019(03): 383-390 .
    30. 高毅,冯超元,程鹏. 结构分割转换工法在地下空间开发中的应用及设想. 隧道建设(中英文). 2019(03): 398-406 .
    31. 豆小天,王贺昆,曹伟明,王晋波,赵李勇,冉敬鹏. 浅埋矩形顶管整体背土效应的原因分析与处理措施. 隧道建设(中英文). 2019(03): 473-479 .
    32. 李洋,高毅,于少辉,程鹏,罗雨田. 结构分割转换工法在地下车库建设中的应用研究. 隧道建设(中英文). 2019(03): 488-495 .
    33. 高毅,于少辉,李洋,程鹏,罗雨田,冯超元. 大型地下空间的结构分割转换工法研究. 隧道建设(中英文). 2019(03): 480-487 .
    34. 李鹏,李洋,高毅,于少辉,李应飞. 基于“CC工法”的顶管隧道施工地表变形规律分析与研究. 隧道建设(中英文). 2019(11): 1838-1847 .
    35. 申洋,穆保岗. 矩形顶管施工对邻近基桩的附加荷载分析. 地下空间与工程学报. 2018(S2): 781-787+820 .
    36. 苏明浩,程鹏,高毅,于少辉,李洋. 基于CC工法建造的地下结构受力分析. 隧道建设(中英文). 2018(S2): 136-143 .
    37. 李永平,白静. 输电隧道浅埋矩形顶管在砂类土下的数值模拟分析. 内蒙古电力技术. 2018(06): 86-89 .

    Other cited types(10)

Catalog

    Article views (321) PDF downloads (252) Cited by(47)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return