• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DI Hong-gui, ZHOU Shun-hua, GONG Quan-mei, WANG Pei-xin, XIAO Jun-hua. Differential settlement of metro tunnels and its zonal control in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 74-79. DOI: 10.11779/CJGE2015S2016
Citation: DI Hong-gui, ZHOU Shun-hua, GONG Quan-mei, WANG Pei-xin, XIAO Jun-hua. Differential settlement of metro tunnels and its zonal control in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 74-79. DOI: 10.11779/CJGE2015S2016

Differential settlement of metro tunnels and its zonal control in soft deposits

More Information
  • Received Date: March 25, 2015
  • Published Date: July 24, 2015
  • Based on the measured settlement (a period of 4 years after operation) of West Extension Line of Nanjing Metro Line 1, the differential settlement characteristics of this line are analyzed. After 4 years’ operation, the cumulative settlement reaches the maximum value of 122 mm, and 4 settlement troughs are formed along the line and each settlement trough has the trend to be wider. By comparing the cumulative settlement to the geological conditions and the adjacent construction activities along the line, the reasons for the differential settlement of the line are investigated. The results show that the non-uniform distribution of the soft soil layer under the metro tunnel and the adjacent construction activities are the main causes for the differential settlement. For the problem of differential settlement of the metro tunnels in soft soil area, the zonal control of the metro line should be adopted by considering the engineering geological conditions and the development intensity of the surrounding projects.
  • [1]
    刘国彬, 李 青, 吴宏伟. 地下水开采引起的次压缩对隧道长期沉降的影响[J]. 岩土力学, 2012, 33(2): 3729-3735. (LIU Guo-bin, LI Qing, NG C W W. Influence of secondary compression due to groundwater mining on long-term tunnel settlement[J]. Rock and Soil Mechanics, 2012, 33(2): 3729-3735. (in Chinese))
    [2]
    NG C W W, LIU G B, LI Q. Investigation of the long-term tunnel settlement mechanisms of the first metro line in Shanghai. Can Geotech J, 2013, 50: 674-684.
    [3]
    黄大维, 周顺华, 宫全美, 等. 软土地区地铁不同结构间差异沉降特点分析[J]. 同济大学学报(自然科学版)2013, 41(1): 95-100. (HUANG Da-wei, ZHOU Shun-hua, GONG Quan-mei, et al. Characteristic analysis of non-uniform settlement for different structures of metro in soft soil districts[J]. Journal of Tongji University (Natural Science), 2013, 41(1): 95-100. (in Chinese))
    [4]
    刘 峰. 软土地区地铁隧道长期沉降及对地铁安全的影响[D]. 南京: 南京大学, 2013. (LIU Feng. Long-term settlement of metro in soft ground and its influence on safety[D]. Nanjing: Nanjing University, 2013. (in Chinese))
    [5]
    黄广龙, 卫 敏, 韩爱民, 等. 南京长江漫滩地层中地铁结构的沉降分析[J]. 水文地质工程地质, 2006(3): 112-116. (HUANG Guang-long, WEI Min, HAN Ai-min, et al. Analysis on the subsidence of tunnel foundation in Nanjing Yangtze River valley flat[J]. Hydrogeology and Engineering Geology, 2006(3): 112-116. (in Chinese))
    [6]
    O'REILLY M, MAIR R, ALDERMAN G. Long-term settlements over tunnels: an eleven-year study at Grimsby[C]// Proceedings of Conference Tunneling. London: Institution of Mining and Metallurgy, 1991: 55-64.
    [7]
    林永国, 廖少明, 刘国彬. 地铁隧道纵向变形影响因素的探讨[J]. 地下空间, 2000, 20(4): 264-267, 289. (LIN Yong-guo, LIAO Shao-ming, LIU Guo-bin. A discussion of the factors effecting on longitudinal deformation of subway tunnel[J]. Underground Space, 2000, 20(4): 264-267, 289. (in Chinese))
    [8]
    SHEN Shui-Long, WU Huai-Na, CUI Yu-Jun, et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J]. Tunneling and Underground Space Technology, 2014, 40: 309-323.
    [9]
    韦 凯, 宫全美, 周顺华. 隧道长期不均匀沉降预测的蚁群算法[J].同济大学学报(自然科学版), 2009, 37(8): 993-998. (WEI Kai, GONG Quan-mei, ZHOU Shun-hua. Ant colony algorithms of long-term uneven settlement prediction in tunnel[J]. Journal of Tongji University(Natural Science), 2009, 37(8): 993-998. (in Chinese))
    [10]
    汪小兵, 王如路, 刘建航. 上海软土地层中运营地铁隧道不均匀沉降的治理方法[J]. 上海交通大学学报, 2012, 46(1): 26-31. (WANG Xiao-bing, WANG Ru-lu, LIU Jian-hang. Disposal method of unequal settlement of metro tunnel in operation in Shanghai soft ground[J]. Journal of Shanghai Jiaotong University, 2012, 46(1): 26-31. (in Chinese))
    [11]
    侯晓亮, 赵晓豹, 李晓昭, 等. 南京河西地区软土地层特征及工程特性研究[J].地质论评, 2011, 57(4): 600-608. (HOU Xiao-liang, ZHAO Xiao-bao, LI Xiao-zhao, et al. Research on engineering properties of flood plain soft soil in Hexi area, Nanjing[J]. Geological Review, 2011, 57(4): 600-608. (in Chinese))
  • Related Articles

    [1]FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
    [2]MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021
    [3]ZHANG Wen-jie, CHEN Lu, YAN Hong-gang. Water retention characteristics and pore size distribution of landfilled municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1491-1497. DOI: 10.11779/CJGE201808015
    [4]XU Jie, ZHAO Wen-bo, CHEN Yong-hui, LU Jia-nan. Experimental study on initial shear modulus and pore-size distribution of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 227-231. DOI: 10.11779/CJGE2017S1045
    [5]LIU Yang, WANG Cheng-lin, ZHANG Duo. Distribution and evolution of pore structure in 2D granular materials under biaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013
    [6]SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020
    [7]HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462.
    [8]LIANG Yue, CHENJian-sheng, CHEN Liang. Numerical simulation model for pore flows and distribution of their velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104-1109.
    [9]LI Fuqiang, WANG Zhao, CHEN Lun, XUE Yongping. Digital image analysis to determine pore size distribution of filtration materials[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 857-860.
    [10]CHANG Dave Ta-tech, TING Yuan-hao, CHENG Chia-ling. Study on variation of pore structure of geotextiles effected by filtration with soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 500-504.
  • Cited by

    Periodical cited type(7)

    1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 .
    2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 .
    3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 .
    4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 .
    5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 .
    6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 .
    7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 .

    Other cited types(14)

Catalog

    Article views (389) PDF downloads (402) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return