Citation: | GENG Gong-qiao, CAI Guo-jun, DUAN Wei-hong, ZOU Hai-feng, LIU Song-yu. Size effect and penetration rate of CPTU based on ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 89-93. DOI: 10.11779/CJGE2015S1018 |
[1] |
刘松玉, 蔡国军, 童立元. 现代多功能CPTU技术理论与工程应用[M]. 北京: 科学出版社, 2013. (LIU Song-yu, CAI Guo-jun, TONG Li-yuan. The theory and engineering application of digital multifunctional piezocone penetration test (CPTU) [M]. Beijing: Science Press, 2013. (in Chinese))
|
[2] |
蔡国军, 刘松玉, 童立元, 等. 现代数字式多功CPTU与中国CPT对比试验研究[J]. 岩石力学与工程学报, 2009, 28(5): 914-928. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Study on the comparison of digital multifunctional piezocone penetration test (CPTU) with Chinese CPT[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 914-928. (in Chinese))
|
[3] |
蔡国军, 刘松玉, 童立元, 等. 基于聚类分析理论的CPTU土分类方法研究[J]. 岩土工程学报, 2009, 31(3): 416-424. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416-424. (in Chinese))
|
[4] |
MEYERHOF G G. The ultimate bearing capacity of wedge-shaped of foundation[C]// Proc 5th International Conference on Soil Mechanics and Foundations. Paris, 1961: 103-109.
|
[5] |
JANBU N, SENNESET K. Effective stress interpretation of in situ static penetration tests[C]// Proceedings of the 1st European Symposium on Penetration Testing. Stockholm, 1974: 181-93.
|
[6] |
DURGUNOGLU H T, MITCHELL J K. Static penetration resistance of soils. I-II[C]// Proceedings of the ASCE Spec Conference on In Situ Measurement of Soil Properties. New York, 1975: 51-89.
|
[7] |
VESIC A S. Expansion of cavities in infinite soil mass[J]. J Soil Mech Found Div, ASCE, 1972, 98: 265-290.
|
[8] |
BALIGH M M. Cavity expansion in sands with curved envelops[J]. Journal of the Geotechnical Engineering Division, 1976, 11: 1131-1146.
|
[9] |
BALIGH M M. Strain path method[J]. J Soil Mech Found Div, ASCE, 1985, 111(9): 1108-1136.
|
[10] |
ROBERTSON P K, CAMPANELLA R G. Interpretation of cone penetration tests: sands[J]. Canadian Geotechnical Journal, 1983, 20(4): 719-733.
|
[11] |
KERISEL J. Foundations profondes[J]. Ann.ITBTP, 1962, 179(3): 32-43.
|
[12] |
DE Borst R, VERMEER P A. Finite element analysis of static penetration tests[J]. Géotechnique, 1984, 34(2): 199-210.
|
[13] |
LU Q, RANDOLPH M F, HU Y, et al. A numerical study of cone penetration in clay[J]. Geótechnique, 2004, 54(4): 257-267.
|
[14] |
WALKER J, YU H S. Adaptive finite element analysis of cone penetration in clay[J]. Acta Geotech, 2004, 1: 43-57.
|
[15] |
WEI L. Numerical simulation and field verification of inclined piezocone penetration test in cohesive soils[D]. Baton Rouge: Louisiana State University, 2004.
|
[16] |
SHENG Daichao, CUI Lijie, ANSARI Yousef. Interpretation of cone factor in undrained soils via full-penetration finite-element analysis[J]. Int J Geomech, 2013, 13: 745-753.
|
[17] |
ENDRA S. Finite element simulation of the cone penetration test in uniform and stratified sand[D]. Michigan: The University of Michigan, 2005.
|
[18] |
费 康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010. (FEI Kang, ZHANG Jian-wei. The application of ABAQUS in Geotechnical Engineering[M]. Beijing: China Water Power Press, 2010. (in Chinese))
|
[19] |
CHUNG S F, RANDOLPH M F, SCHNEIDER J A. Effect of penetration rate on penetrometer resistance in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1188-1196.
|
[1] | DENG Huafeng, WANG Wendong, LI Jianlin, FENG Yunjie, LI Guanye, QI Yu, CHEN Xingzhou. Damage effects and model for jointed rock mass under water-rock interaction and repeated shear sequence[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 503-511. DOI: 10.11779/CJGE20211510 |
[2] | LI Ren-jie, JI Feng, FENG Wen-kai, WANG Dong-po, ZHANG Jin-ming. Shear creep characteristics and constitutive model of hidden non-persistent joints[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2253-2261. DOI: 10.11779/CJGE201912010 |
[3] | LIU Wu. Coupled damage and friction model for persistent fractured rocks considering multi-scale structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 147-154. DOI: 10.11779/CJGE201801015 |
[4] | LIU Hong-yan. Reply to discussion on“A dynamic damage constitutive model for rock masswith non-persistent joints under uniaxial compression”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1931-1931. |
[5] | LI Lie-lie, ZHUO Li, LIU Zhi-yong. Discussion on“A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1930-1931. DOI: 10.11779/CJGE201610025 |
[6] | LIU Hong-yan, WANG Xin-sheng, ZAHNG Li-min, ZHANG Li-guo. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 426-436. DOI: 10.11779/CJGE201603005 |
[7] | YUAN Xiao-qing, LIU Hong-yan, LIU Jing-ping. 3-D constitutive model for rock masses with non-persistent joints based on compound damage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 91-99. DOI: 10.11779/CJGE201601009 |
[8] | Numerical simulation of a new damage rheology model for jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7). |
[9] | LIU Yuanming, XIA Caichu. Study on models and strength behavior of rock mass containing discontinuous joints in direct shear[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1242-1247. |
[10] | Zhang Wu, Zhang Xianhong. Elastic Models of Jointed Rock Masses[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(4): 33-44. |