• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZUO Dian-jun, CHEN Long, TIAN Zhi-wei, QI Chang-guang. Numerical study on mechanical characteristics of pile groups of wharf foundation under lateral and vertical cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 51-55. DOI: 10.11779/CJGE2015S1011
Citation: ZUO Dian-jun, CHEN Long, TIAN Zhi-wei, QI Chang-guang. Numerical study on mechanical characteristics of pile groups of wharf foundation under lateral and vertical cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 51-55. DOI: 10.11779/CJGE2015S1011

Numerical study on mechanical characteristics of pile groups of wharf foundation under lateral and vertical cyclic loadings

More Information
  • Received Date: March 25, 2015
  • Published Date: July 24, 2015
  • Based on a liquefied natural gas terminal wharf project in Tianjin, the finite element software ABAQUS is used to study the mechanical characteristics of pile groups of wharf foundation under lateral and vertical cyclic loadings, and the influence of cyclic period of lateral and vertical loadings is discussed. The results indicate that under the lateral and vertical cyclic loadings, the stress of piles redistributes, the shaft force of piles increases, and the side resistance decreases. The increase amplitude of shaft force row piles is the largest. The range of side resistance is mainly concentrated in the area of more than 1/3 of pile length. The cyclic period has great influence on the stress redistribution: with change of the cyclic period, load distribution of piles adjustes gradually, the shaft forces of front and back row piles increase, and the shaft forces and side resistances of the middle row piles decrease. When the cyclic period reaches a certain value, the shaft forces and side resistances of piles no longer change and tend to a steady state.
  • [1]
    王元战, 龙俞辰, 王禹迟, 等. 离岸深水全直桩码头承载特性与简化计算方法[J]. 岩土工程学报, 2013, 35(9): 1573-1579. (WANG Yuan-zhan, LONG Yu-chen, WANG Yu-chi, et al. Bearing behavior and simplified calculation method of all-vertical-piled wharf in offshore deep water[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1573-1579. (in Chinese))
    [2]
    BROWN D A, REESE Lymon C, O’NEIL Michael W. Cyclic lateral loading of a large-scale pile group[J]. Journal of Geotechnical Engineering, 1987, 113(11): 1326-1343.
    [3]
    RAO S N, RAO K M. Behavior of rigid piles in marine clays under lateral cyclic loading[J]. Ocean Engineering, 1993, 20(3): 281-293.
    [4]
    MOSS R E S, CALIENDO J A, ANDERSON L R. Investigation of a cyclic laterally loaded model pile group[J]. Soil Dynamics and Earthquake Engineering, 1998(17): 519-523.
    [5]
    BASACK S, PURKAYASTH R D. Behavior of single pile under lateral cyclic load marine clay[J]. Asian Journal of Civil Engineering (Building And Housing), 2007, 8(4): 443-458.
    [6]
    MARTIN A, YU-SHU K, KHALID A R. Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009(36): 725-735.
    [7]
    CHANDRASEKARAN S S, BOOMINATHAN A, DODAGOUDAR G R. Experimental investigations on the behavior of pile groups in clay under lateral cyclic loading[J]. Geotechnical and Geological Engineering, 2010(28): 603-617.
    [8]
    ABDRABBO F M, GAAVER K E. Simplified analysis of laterally loaded pile groups[J]. Alexandria Engineering Journal, 2012(12): 121-127.
    [9]
    陈仁朋, 顾 明, 孔令刚, 等. 水平循环荷载下高桩基础受力性状模型试验研究[J]. 岩土工程学报, 2012, 34(11): 1990-1996. (CHEN Ren-peng, GU Ming, KONG Ling-gang, et al. Large-scale model tests on high-rise platform pile groups under cyclic lateral loads[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 1990-1996. (in Chinese))
    [10]
    王富强, 荣 冰, 张 嘎, 等. 水平循环荷载下风电机桩基础离心模型试验研究[J]. 岩土力学, 2011, 32(7): 1926-1930. (WANG Fu-qiang, RONG Bing, ZHANG Ga, et al. Centrifugal model test of pile foundation for wind power unit under cyclic lateral loading[J]. Rock and Soil Mechanics, 2011, 32(7): 1926-1930. (in Chinese))
    [11]
    PARVIN A, WANG Wei. Concrete columns confined by fiber composite wraps under combined axial and cyclic lateral loads[J]. Composite Structures, 2002(58): 539-549.
    [12]
    黄亮亮, 樊 平. 竖向水平向荷载共同作用下排桩模型试验研究[J]. 工程勘察, 2012(7): 23-27. (HUANG Liang-liang, FAN Ping. Experimental study on behaviors of axially and laterally loaded row piles[J]. Geotechnical Investigation&Surveying, 2012(7): 23-27. (in Chinese))
    [13]
    HELWANY S. Applied soil mechanics: with ABAQUS applications[J]. New Jersey: John Wiley & Sons, Inc, 2007.
    [14]
    杨 敏, 赵锡宏. 分层土中的单桩分析法[J]. 同济大学学报, 1992, 20(4): 421-427. (YANG Min, ZHAO Xi-hong. An approach for a single pile in layered soil[J]. Journal of Tongji University, 20(4): 421-427. (in Chinese))
    [15]
    HWLWANY S. Applied soil mechanics with ABAQUS applications[M]. New Jersey: John Wiley & Sons, Inc, 2007.
    [16]
    RANDOLPH M F, WORTH C P. Application of the failure state in undrained single shear to shaft capacity of driven piles[J]. Géotechnique, 1981, 31(1): 143-157.
    [17]
    JTS145—2—2013 海港水文规范[S]. 北京: 人民交通出版社, 2013. (JTS145—2—2013 Code of hydrology for sea harbour[S]. Beijing: China Communication Press, 2013. (in Chinese))
    [18]
    杨龙才, 郭庆海, 周顺华, 等. 高速铁路桥桩在轴向循环荷载长期作用下的承载和变形特性试验研究[J]. 岩石力学与工程学报, 2005, 24(13): 2362-2367. (YANG Long-cai, GUO Qing-hai, ZHOU Shun-hua, et al. Dynamic behaviors of pile foundation of high-speed railway bridge under long-term cyclic loading in soft soil[J]. Chinese Journal of Rock and Engineering, 2005, 24(13): 2362-2367. (in Chinese))
  • Related Articles

    [1]ZHOU Xin, SHENG Jian-long, YE Zu-yang, LUO Wang, HUANG Shi-bing, CHENG Ai-ping. Effects of geometrical feature on Forchheimer-flow behavior through rough-walled rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2075-2083. DOI: 10.11779/CJGE202111014
    [2]CHEN Zi-yu, LI Guo-ying, WEI Kuang-min, WU Li-qiang, ZHU Yu-meng. Ultimate state and probability of particle breakage for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003
    [3]ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. Review and research on osmotic suction of saturated saline soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1199-1210. DOI: 10.11779/CJGE202007003
    [4]ZHU Sheng. Gradation equation and compaction characteristics of continuously distributed coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1899-1906. DOI: 10.11779/CJGE201910014
    [5]ZHANG Hong, YAN Xiao-hui, WANG Zhong-han, LIU Hai-yang. Migration law of salt in compacted aeolian sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 741-747. DOI: 10.11779/CJGE201904018
    [6]ZHU Sheng, ZHONG Chun-xin, WANG Jing, HE Shun-bin. Experimental study on filling standard of high rockfill dams with soil core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 561-566. DOI: 10.11779/CJGE201903019
    [7]TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012
    [8]ZHU Sheng, ZHONG Chun-xin, ZHENG Xi-lei, GAO Zhuang-pin, ZHAN Zhen-gang. Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. DOI: 10.11779/CJGE201801010
    [9]ZHU Sheng, DENG Shi-de, NING Zhi-yuan, WANG Jing. Gradation design method for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. DOI: 10.11779/CJGE201706023
    [10]WANG Sheng-fu, YANG Ping, LIU Guan-rong, FAN Wen-hu. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. DOI: 10.11779/CJGE201607012

Catalog

    Article views (332) PDF downloads (296) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return