• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Yong-fu. Fractals in soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 16-20. DOI: 10.11779/CJGE2015S1004
Citation: XU Yong-fu. Fractals in soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 16-20. DOI: 10.11779/CJGE2015S1004

Fractals in soil mechanics

More Information
  • Received Date: March 25, 2015
  • Published Date: July 24, 2015
  • The tensile strength, crushing probability and shear strength are deduced from the fractal model for particle breakage of coarse soils. The swelling deformation and compression are derived fron the surface fractal model for cohesive soils. The soil-water characteristic curve, effective stress and shear strength are derived from the surface fractal model for pore-size distribution of unsaturated soils.
  • [1]
    XU Y F, SUN D A. Correlation of surface fractal dimension to frictional angle at critical state[J]. Géotechnique, 2005, 55(9): 691-696.
    [2]
    XU Y F. Fractal approach to unsaturated shear strength[J]. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 2004, 3: 264-274
    [3]
    XU Y F. Surface irregularity of solids in molecular domain[J]. Chaos, Solitons & Fractals, 2004, 21(2): 435-444.
    [4]
    XU Y F, SUN D A. A fractal model for soil pores and its application to determination of water permeability[J]. Physica A, 2002, 316(1/2/3/4): 56-64
    [5]
    XU Y F. Fractal model for compression of swelling clays[J]. Mechanics Research Communication, 2006, 2: 206-216.
    [6]
    XU Y F. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution[J]. Computer and Geotechnics, 2004, 31(7): 549-557
    [7]
    XU Y F. Explanation of scaling phenomenon based on fractal fragmentation[J]. Mechanics Research Communication, 2005, 32: 209-220.
    [8]
    KING G C P, SAMMIS C G. The mechanisms of finite brittle strain[J]. Pure and Applied Geophysics, 1992, 238: 611-640.
    [9]
    SAMMIS C, KING G, BIEGEL R, The kinematics of gouge deformation[J]. Pure and Applied Geophysics, 1987, 125: 777-812.
    [10]
    XU Y F, XU J P, WANG J H. F. Fractal model for size effect on ice failure strength[J]. Cold Regions Science and Technology, 2004, 40: 135-144.
    [11]
    STEACY S J, SAMMIS C G. An automation for fractal patterns of fragmentation[J]. Nature, 1991, 353: 250-251.
    [12]
    MANDELBROT B B. The fractal geometry of nature[M]. San Francisco: WH Freeman and Company, 1982.
    [13]
    WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18: 293-297.
    [14]
    MCDOWELL G R, BOLTON M D, ROBERTSON D. The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44: 2079-2102.
    [15]
    MO YF, TURNER KT, SZLUFARSKA I. Friction laws at the nanoscale[J]. Nature, 2009, 457: 1116-1118.
    [16]
    XU Y F, XI Y, CHU F F. Method for shear strength of coarse granular materials based on fractal grain crushing[C]// IS-Cambridge. Cambridge, 2014.
    [17]
    AVNIR D, JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989, 5: 1431-1433.
    [18]
    KAHR G, KRAEHENBUEHL F, STOECKLI H F. Study of the water-bentonite system by vapour adsorption[J]. Immersion Colorimetry and X-ray Technique. Clay Minerals, 1990, 25: 499-506
    [19]
    XU Y F, MATSUOKA H, SUN D A. Swelling characteristics of fractal-textured bentonite and its mixtures[J]. Applied Clay Science, 2003, 22(4): 197-209
    [20]
    徐永福, 项国圣, 褚飞飞, 等. 膨润土膨胀变形的分形模型[J]. 工程地质学报, 2014, 22(5): 785-791. (XU Yong-fu, XIANG Guo-sheng, CHU Fei-fei. Fractal model for swelling deformation of bentonite[J]. Journal of Engineering Geology, 2014, 22(5): 785-791. (in Chinese))
    [21]
    BOLT G H. Physico-chemical analysis of the compressi- bility of pure clay[J]. Géotechnique, 1956, 6(2): 86-93.
    [22]
    LIU L, NERETNIEKS I. Homo-interaction between parallel plates at constant charge[J]. Colloids and Surfaces A: Physico chemical and Engineering Aspects, 2008, 317(1): 636-642.
    [23]
    XU Y F, JIANG H, CHU F F, et al. Fractal model for surface erosion of cohesive sediments[J]. Fractals, 2014. doi: 10.1142/S0218348X14400064.
  • Cited by

    Periodical cited type(3)

    1. 薛强,杜延军,胡黎明,詹良通,李江山. 环境土力学与工程研究进展. 土木工程学报. 2025(03): 83-112 .
    2. 张春华,黄江东,邓正定,谢海建,邓通发. 热渗透作用下有机污染物在双人工复合衬层中的一维运移模型. 岩土工程学报. 2024(06): 1254-1262 . 本站查看
    3. 江文豪,李江山,冯晨. 考虑力学-化学荷载下压实黏土垫层中一维非线性固结与污染物运移耦合模型. 岩土工程学报. 2023(11): 2289-2298 . 本站查看

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return