• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
ZHANG Tao, LIU Song-yu, CAI Guo-jun, LI Jun-hai, JIE Dao-bo. Experimental study on relationship between thermal and mechanical properties of treated silt by lignin[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1876-1793. DOI: 10.11779/CJGE201510016
Citation: ZHANG Tao, LIU Song-yu, CAI Guo-jun, LI Jun-hai, JIE Dao-bo. Experimental study on relationship between thermal and mechanical properties of treated silt by lignin[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1876-1793. DOI: 10.11779/CJGE201510016

Experimental study on relationship between thermal and mechanical properties of treated silt by lignin

More Information
  • Received Date: September 11, 2014
  • Published Date: October 19, 2015
  • To illustrate the evaluation laws of thermal and mechanical properties of lignin-treated silt during curing period, a series of laboratory tests including standard proctor compaction test, thermal resistivity test, unconfined compressive strength test, modulus of resilience test, mercury intrusion porosimetry and scanning electron microscopy analysis are conducted to study the relationship among thermal resistivity, strength and stiffness and lignin content, moisture content and curing time of treated silt. Moreover, the changes of microstructure of lignin-treated silt are qualitatively or quantitatively evaluated to state the relationship between thermal and mechanical properties of treated silt. The test results show that the maximum dry density of treated silt is higher than that of natural silt, but the optimum moisture content is lower than that of natural silt. The sensitivity of the dry density to changes of moisture content increases. The thermal resistivity of treated silt increases nearly with the increase of lignin content and curing time, and after 60 days of curing all the treated soils, the thermal resistivity tends to be the same. It is closely related to the density of soils and the thermal properties of soil compositions. The strength of treated silt increases with the increase of lignin content and curing time and are 6.0 times higher than natural silt for 12% lignin treated after 28 days of curing. The variation of modulus of resilience for treated silt is similar to that of the unconfined compressive strength. The optimum content of lignin for treating silt is approximately 12%. The total pore volume and average pore diameter of silt are significantly reduced, and a more stable soil structure is formed by coating, connecting particles and filling pores after treatment of lignin.
  • [1]
    ZHU Z D, LIU S Y. Utilization of a new soil stabilizer for silt subgrade[J]. Engineering Geology, 2008, 97(3): 192-198.
    [2]
    张 涛, 蔡国军, 刘松玉. 南京地区典型土体热学特性与预测模型[J]. 东南大学学报 (自然科学版), 2014, 44(3): 655-661. (ZHANG Tao, CAI Guo-jun, LIU Song-yu. Thermal properties and prediction model of typical soils in Nanjing area[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(3): 655-661. (in Chinese))
    [3]
    BELL F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 1996, 42(4): 223-237.
    [4]
    BOARDMAN D I, GLENDINNING S, ROGERS C D F. Development of stabilisation and solidification in lime-clay mixes[J]. Géotechnique, 2001, 51(6): 533-543.
    [5]
    PUPPALA A J, KADAM R, MADHYANNAPU R S, et al. Small-strain shear moduli of chemically stabilized sulfate-bearing cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 322-336.
    [6]
    INDRARATNA B, MUTTUVEL T, KHABBAZ H, et al. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 837-844.
    [7]
    CHEN R, DRNEVICH V P, DAITA R K. Short-term electrical conductivity and strength development of lime kiln dust modified soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4): 590-594.
    [8]
    ROLLINGS R S, BURKES M P. Sulfate attack on cement-stabilized sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 364-372.
    [9]
    刘松玉, 张 涛, 蔡国军, 等. 生物能源副产品木质素加固土体研究进展[J]. 中国公路学报, 2014, 27(8): 1-10. (LIU Song-yu, ZHANG Tao, CAI Guo-jun, et al. Research progress of soil stabilization with lignin from bio-energy by-products[J]. Chinese Journal of Highway and Transport, 2014, 27(8): 1-10. (in Chinese))
    [10]
    SHULGA G, REKNER F, VARSLAVAN J. SW-soil and water: lignin-based interpolymer complexes as a novel adhesive for protection against erosion of sandy soil[J]. Journal of Agricultural Engineering Research, 2001, 78(3): 309-316.
    [11]
    VINOD J S, INDRARATNA B, MAHAMUD M A A. Stabilisation of an erodible soil using a chemical admixture[J]. Ground Improvement, 2010, 163(1): 43-51.
    [12]
    TINGLE J S, SANTONI R L. Stabilization of clay soils with nontraditional additives[J]. Transportation Research Record, 2003(1819): 72-84.
    [13]
    SANTONI R L, TINGLE J S, NIEVES M. Accelerated strength improvement of silty sand with nontraditional additives[J]. Transportation Research Record, 2005(1936): 34-42.
    [14]
    CEYLAN H, GOPALAKRISHNAN K, KIM S. Soil stabilization with bioenergy coproduct[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010(2186): 130-137.
    [15]
    PUPPALA A J, HANCHANLOET S. Evaluation of a new chemical (SA-44/LS-40) treatment method on strength and resilient properties of a cohesive soil[C]// Preprint 78th Annual Meeting of the Transportation Research Board. Washington D C, 1999.
    [16]
    INDRARATNA B, MUTTUVEL T, KHABBAZ H. Modelling the erosion rate of chemically stabilized soil incorporating tensile force-deformation characteristics[J]. Canadian Geotechnical Journal, 2009, 46(1): 57-68.
    [17]
    HOTZ R D, GE L. Investigation of the thermal conductivity of compacted silts and its correlation to the elastic modulus[J]. Journal of Materials in Civil Engineering, 2009, 22(4): 408-412.
    [18]
    EKWUE E I, STONE R J, BHAGWAT D. Thermal conductivity of some compacted Trinidadian soils as affected by peat content[J]. Biosystems Engineering, 2006, 94(3): 461-469.
    [19]
    CAI G J, ZHANG T, PUPPALA A J, LIU S Y. Thermal characterization and prediction model of typical soils in Nanjing area of China[J]. Engineering Geology, 2015, 191: 23-30.
    [20]
    GANGADHARA R M, SINGH D N. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 767-773.
    [21]
    INDRARATNA B, ATHUKORALA R, VINOD J. Estimating the rate of erosion of a silty sand treated with lignosulfonate[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 139(5): 701-714.
    [22]
    SAWANGSURIYA A, EDIL T B, BOSSCHER P J. Modulus-suction-moisture relationship for compacted soils[J]. Canadian Geotechnical Journal, 2008, 45(7): 973-983.
    [23]
    WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences of the United States of America, 1921: 115-116.
    [24]
    ZHANG L M, LI X. Microporosity structure of coarse granular soils[J]. Journal of Geotechnical and Geo- environmental Engineering, 2010, 136(10): 1425-1436.
    [25]
    丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学, 2011, 32(12): 3591-3597. (DING Jian-wen, HONG Zhen-shun, LIU Song-yu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics, 2011, 32(12): 3591-3597. (in Chinese))
    [26]
    刘兆鹏, 杜延军, 刘松玉, 等. 淋滤条件下水泥固化铅污染高岭土的强度及微观特性的研究[J]. 岩土工程学报, 2014, 36(3): 547-554. (LIU Zhao-peng, DU Yan-jun, LIU Song-yu, et al. Stength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554. (in Chinese))
    [27]
    DELAGE P. A microstructure approach to the sensitivity and compressibility of some Eastern Canada sensitive clays[J]. Géotechnique, 2010, 60(5): 353-368.
    [28]
    LEE J K, SHANG J Q. Evolution of thermal and mechanical properties of mine tailings and fly ash mixtures during curing period[J]. Canadian Geotechnical Journal, 2014, 51(5): 570-582.
  • Cited by

    Periodical cited type(25)

    1. 洪嘉伟,张彬,潘道明. 隧道注浆圈渗透系数对邻侧隧道的影响. 交通科技与管理. 2025(01): 147-151 .
    2. 胡颢,王超林,黄小龙,党爽,刘腾龙. 岩溶隧道对地下水环境影响分析及涌水量预测研究. 贵州大学学报(自然科学版). 2024(02): 103-109+124 .
    3. 于勇,刘文骏,傅鹤林,胡凯巽. 超高水压超大埋深组合工法水下隧道连接段泄水降压研究. 隧道建设(中英文). 2024(04): 663-672 .
    4. 樊浩博,陈宏文,赵东平,朱正国,赵梓宇,朱永全,高新强. 在役岩溶隧道衬砌水压分布及预警控制标准研究. 岩土力学. 2024(07): 2153-2166 .
    5. 魏福成,汪镇,周凤玺. 层状地质条件下注浆模型渗流场解析解. 科学技术与工程. 2024(29): 12723-12733 .
    6. 魏荣华,张康健,张志强. 铁路隧道深埋水沟防排水技术参数优化研究. 现代隧道技术. 2024(05): 183-192 .
    7. 雒少江,丁卫华,薛海斌,李玉波,严广艺,宋常贵,张东旭. 基于宏观地质模型分类的深埋输水隧洞衬砌外水压力研究. 中国农村水利水电. 2024(12): 177-184+192 .
    8. 戚海棠,任旭华,张继勋. 基于井流理论的隧洞外水压力解析计算方法研究. 水力发电. 2023(04): 29-35+74 .
    9. 黄威,孙云,张建平,王耘梓,张延杰,徐卫亚. 深埋隧洞高外水压力研究进展. 三峡大学学报(自然科学版). 2023(05): 1-11 .
    10. 雷刚,杨凌武,胡明华,施芸,盛磊. 基于实时扫描的隧道自动开槽机器人电气系统设计. 制造业自动化. 2023(11): 107-110 .
    11. 王新越,王如宾,王丹,向天兵,王鹏,黄威,张建平,徐卫亚. 滇中引水松林隧洞高外水压力作用数值模拟分析. 隧道与地下工程灾害防治. 2023(04): 72-80 .
    12. 傅鹤林,安鹏涛,成国文,王仁健,李鲒,余小辉. 考虑注浆圈与复合衬砌时体外排水方式设计. 湖南大学学报(自然科学版). 2022(01): 174-182 .
    13. 傅鹤林,安鹏涛,成国文,李鲒,余小辉,陈龙. 富水区隧道环向盲管间距优化分析. 现代隧道技术. 2022(02): 20-27 .
    14. 黄世光,杨艳娜,范全忠,黄靖宇,余磊. 隧道堵水限排设计参数变化规律试验研究. 现代隧道技术. 2022(03): 201-210 .
    15. 任世林. 四线临海隧道开挖渗流演变及参数影响分析. 铁道科学与工程学报. 2022(07): 1985-1996 .
    16. 高国庆,齐国庆,陈仲达,刘剑锋. 基于GMS的红崖山隧道渗流场分析与涌水量预测. 水利与建筑工程学报. 2022(04): 142-148+211 .
    17. 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验. 隧道与地下工程灾害防治. 2022(03): 77-91 .
    18. 黄文华,张云. 基于浆液扩散的软弱围岩隧道注浆加固效果研究. 公路. 2021(08): 355-359 .
    19. 刘世伟,赵书争,付迪,赵强,朱泽奇. 长期渗漏水条件下海陆相浅埋盾构隧道隧顶水土荷载计算. 岩石力学与工程学报. 2021(10): 2149-2160 .
    20. 袁鸿鹄,刘勇,顾小明,张琦伟,李宏恩,孙洪升,杨良权. 冬奥会综合管廊绿色减排数值模拟分析. 水利水电技术(中英文). 2021(S2): 326-331 .
    21. 李林毅,阳军生,王树英,包德勇,高超. 体外排水方式在隧道工程中的研究及应用. 铁道学报. 2020(10): 118-126 .
    22. 张进. 富水环境下隧道地下水限量排放的衬砌外水压力分析. 四川建筑. 2020(05): 96-98+102 .
    23. 和晓楠,周晓敏,郭小红,徐衍,马文著. 深埋隧道注浆加固围岩非达西渗流场及应力场解析. 中国公路学报. 2020(12): 200-211 .
    24. 杨栋. 松散区盾构隧道注浆控制技术研究. 现代交通技术. 2020(06): 30-34 .
    25. 关振长,任璐瑶,何亚军,胡宏林. 山岭隧道渗流及衬砌等效渗透系数的实用计算. 水利与建筑工程学报. 2020(06): 52-56 .

    Other cited types(20)

Catalog

    Article views (359) PDF downloads (440) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return