XIE Yi-fan, WU Ji-chun, XUE Yu-qun, XIE Chun-hong. Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1727-1732. DOI: 10.11779/CJGE201509023
    Citation: XIE Yi-fan, WU Ji-chun, XUE Yu-qun, XIE Chun-hong. Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1727-1732. DOI: 10.11779/CJGE201509023

    Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers

    More Information
    • Received Date: December 20, 2014
    • Published Date: September 17, 2015
    • A cubic-spline multiscale finite element method (MSFEM-C) is proposed for the simulation of nodal Darcy velocities in the heterogeneous media. The main goal of this method is to efficiently solve the hydraulic heads and nodal Darcy velocities. It is realized by the combination of cubic-spline technique and the multiscale finite element method (MSFEM). MSFEM-C applies cubic-spline technique to multiscale base functions so as to make their derivatives continuous. Therefore, the continuous derivatives of hydraulic head can be obtained, which ensures the continuity of the velocity field. The MSFEM-C is based on MSFEM, so that the computation of nodal Darcy velocities is decomposed from element to element. Therefore, MSFEM-C can save much computational cost, which makes it more efficinent in solving high computational problems, such as large-scale, long-term or nonlinear problems. The numerical experiments indicate that the MSFEM-C achieves accurate nodal Darcy velocities and hydraulic heads with much less computational cost.
    • [1]
      ZHOU Q, BENSABAT J, BEAR J. Accurate calculation of specific discharge in heterogeneous porous media[J]. Water Resources Research, 2001, 37(12): 3057-3069。
      [2]
      王铁行, 罗 扬, 张 辉. 黄土节理二维稳态流流量方程[J]. 岩土工程学报, 2013, 35(6): 1115-1120. (WANG Tie-hang, LUO Yang, ZHANG Hui. Two-dimensional steady flow rate equation for loess joints[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1115-1120. (in Chinese))
      [3]
      SRINIVAS C, RAMASWAMY B, WHEELER M F. Mixed finite element methods for flow through unsaturated porous media[M]// RUSSELL T F, EWING R E, BREBBIA C A, et al, ed. Computational Methods in Water Resources, IX, vol. 1: Numerical Methods in Water Resources. Southampton: Elsevier Applied Science, 1992: 239-246.
      [4]
      D'ANGELO C, SCOTTI A. A mixed finite element method for Darcy flow in fractured porous media with non-matching grids[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46(2): 465-489.
      [5]
      ERVIN V J. Approximation of axisymmetric Darcy flow using mixed finite element methods[J]. SIAM Journal on Numerical Analysis, 2013, 51(3): 1421-1442.
      [6]
      谢春红, 赵文良, 张天岭, 等. 地下水不稳定渗流达西速度计算新方法[J]. 岩土工程学报, 1996, 18(1): 68-74. (XIE Chun-hong, ZHAO Wen-liang, ZHANG Tian-lin, et al. A new method for solving unsteady groundwater flow[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 68-74. (in Chinese))
      [7]
      YEH G T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow[J]. Water Resources Research, 1981, 17(5): 1529-1534.
      [8]
      BATU V. A finite element dual mesh method to calculate Nodal Darcy velocities in nonhomogeneous and anisotropic aquifers[J]. Water Resources Research, 1984, 20(11): 1705-1717.
      [9]
      ZHANG Z, XUE Y, WU J. A cubic‐spline technique to calculate Nodal Darcian velocities in aquifers[J]. Water Resources Research, 1994, 30(4): 975-981.
      [10]
      薛禹群, 叶淑君, 谢春红, 等. 多尺度有限元法在地下水模拟中的应用[J]. 水利学报, 2004, 7: 7-13. (XUE Yu-qun, YE Shu-jun, XIE Chun-hong, et al. Application of multi-scale finite element method to simulation of groundwater flow[J]. Journal of Hydraulic Engineering, 2004, 7: 7-13. (in Chinese))
      [11]
      HOU T Y, WU X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1): 169-189.
      [12]
      贺新光, 任 理. 求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法——Ⅰ数值格式[J]. 水利学报, 2009, 40(1): 38-45. (HE Xin-guang, REN Li. Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media Ⅰ: numerical scheme[J]. Journal of Hydraulic Engineering, 2009, 40(1): 38-45. (in Chinese))
      [13]
      贺新光, 任 理. 求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法: Ⅱ数值格式[J]. 水利学报, 2009, 40(2): 138-144. (HE Xin-guang, REN Li. Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media Ⅱ: numerical scheme[J]. Journal of Hydraulic Engineering, 2009, 40(1): 38-45. (in Chinese))
      [14]
      叶淑君, 吴吉春, 薛禹群. 多尺度有限单元法求解非均质多孔介质中的三维地下水流问题[J]. 地球科学进展, 2004, 19(3): 437-442. (YE Shu-jun, WU Ji-chun, XUE Yu-qun. Application of multiscale finite element method to three dimensional groundwater flow problems in heterogeneous porous media[J]. Advance in Earth Sciences, 2004, 19(3): 437-442. (in Chinese))
      [15]
      于 军, 吴吉春, 叶淑君, 等. 苏锡常地区非线性地面沉降耦合模型研究[J]. 水文地质工程地质, 2007, 34(5): 11-16. (YU Jun, WU Ji-chun, YE Shu-jun, et al. Research on nonlinear coupled modeling of land subsidence in Suzhou, Wuxi and Changzhou areas, China[J]. Hydrogeology & Engineering Geology, 2007, 34(5): 11-16. (in Chinese))
      [16]
      GREVILLE T N E. Theory and applications of spline functions[M]. New York: Academic Press, 1969.
      [17]
      KARIM S A A, ROSLI M A M, MUSTAFA M I M. Cubic spline interpolation for petroleum engineering data[J]. Applied Mathematical Sciences, 2014, 8(102): 5083-5098.
      [18]
      王省富. 样条函数及其应用[M]. 西安: 西北工业大学出版社, 1989. (WANG Sheng-fu. Spline functions and its applications[M]. Xi'an: Press of Industrial University of Northwest China, 1989. (in Chinese))
      [19]
      薛禹群, 谢春红. 地下水数值模拟[M]. 北京: 科学出版社, 2007: 175-178. (XUE Yu-qun, XIE Chun-hong. Numerical simulation for groundwater[M]. Beijing: Science Press, 2007: 175-178. (in Chinese))
    • Related Articles

      [1]SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781
      [2]SHI Bu-tao, ZHANG Yun, ZHANG Wei. Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1678-1684. DOI: 10.11779/CJGE201609015
      [3]LI Da-yong, GUO Yan-xue, GAO Yu-feng. Principle and application of pole point method of Mohr's circle[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1883-1888.
      [4]LIU Yun-si, FU He-lin, RAO Jun-ying, DONG Hui, ZHANG Hai-ming. Tensile strength of slate based on Heok-Brown criterion[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1172-1177.
      [5]QU Xie, HUANG Mao-song, Lü Xi-lin. Progressive failure of soils based on non-local Mohr-Coulomb models[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 523-530.
      [6]DAI Guo-liang, GONG Wei-ming, CHEN Long. Modified method for shaft resistance of rock-socketed piles based on Hoek-Brown criterion[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1746-1752.
      [7]ZOU Jinfeng, LI Liang, YANG Xiaoli, DENG Zongwei. Study on the ultimate pullout force of pre-stressed cable based on nonlinear Mohr-Coulomb failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 107-111.
      [8]WU Shunchuan, JIN Aibing, GAO Yongtao. Numerical simulation analysis on strength reduction for slope of jointed rock masses based on gereralized Hoek-Brown failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1975-1980.
      [9]LI Hongtao, ZUO Jianping, LI Hui. Theoretical research of Hoek - Brown empirical strength criterion[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 212-215.
      [10]Yan Chunfeng, Xu Jian, He Cuixiang. The reliability analysis of the HoekBrown empirical strength criterion for rockmass[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 550-553.
    • Cited by

      Periodical cited type(1)

      1. 孙胜难,袁铸钢,刘钊,马洪浩. 基于随机森林回归算法的水泥立式磨磨内压差预测. 洛阳理工学院学报(自然科学版). 2024(02): 44-50 .

      Other cited types(6)

    Catalog

      Article views (344) PDF downloads (260) Cited by(7)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return