• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Ding-wen, CAO Zhi-guo, LIU Song-yu, CHEN Lei. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1685-1691. DOI: 10.11779/CJGE201509017
Citation: ZHANG Ding-wen, CAO Zhi-guo, LIU Song-yu, CHEN Lei. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1685-1691. DOI: 10.11779/CJGE201509017

Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils

More Information
  • Received Date: July 10, 2014
  • Published Date: September 17, 2015
  • In order to explore the application potential of electrical resistivity method in the field of solidified heavy metal-contaminated soils, the artificial contaminated soils with five different lead contents are solidified using cement, and then their electrical resistivities and unconfined compressive strengths after various curing periods are tested. The relationship between the electrical resistivity and unconfined compressive strength is discussed. The test results show that the cement hydration reaction results in an increase of the electrical resistivity of solidified samples, but the electrical resistivity decreases with the increase of after-curing porosity, degree of saturation and lead content. A key parameter (nt·)/ (aw·T0.5) (e is the Euler’s number) is proposed to comprehensively reflect the effects of the lead content, cement hydration reaction and dense state of soils on the electrical resistivity of solidified soils. The Archie’s electrical resistivity formula is extended to solidified heavy metal-contaminated soils by replacing the porosity by the key parameter. There is a power function relationship between the strength and the electrical resistivity while the lead content of solidified soils is certain. The electrical resistivity method can be used as a non-destructive, economical and continuous way to evaluate the quality of solidified heavy metal-contaminated soils.
  • [1]
    CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilization: A review[J]. Waste Management, 2009, 29(1): 390-403.
    [2]
    United States Environmental Protection Agency. Solidification /stabilization use at superfund sites[R]. Washington D C: Office of Solid Waste and Emergency Response, Technology Innovation Office, 2000.
    [3]
    陈 蕾, 刘松玉, 杜延军, 等. 水泥固化重金属铅污染土的强度特性研究[J]. 岩土工程学报, 2010, 32(12): 1898-1903. (CHEN Lei, LIU Song-yu, DU Yan-jun, et al. Unconfined compressive strength properties of cement solidified/ stabilized lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903. (in Chinese))
    [4]
    JIANG N J, DU Y J, LIU S Y, et al. Experimental investigation of the compressibility behaviour of cement-solidified/ stabilized zinc-contaminated kaolin clay[J]. Géotechnique Letters, 2014, 4(2): 27-32.
    [5]
    刘兆鹏, 杜延军, 蒋宁俊, 等. 基于半动态淋滤试验的水泥固化铅污染黏土溶出特性研究[J]. 岩土工程学报, 2013, 35(12): 2212-2218. (LIU Zhao-peng, DU Yan-jun, JIANG Ning-jun, et al. Leaching properties of cement-solidified lead-contaminated clay via semi-dynamic leaching tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2212-2218. (in Chinese))
    [6]
    AL-TABBAA A, EVANS C W, WALLACE C J. Pilot in situ auger mixing treatment of a contaminated site: Part 2. Site trial[J]. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 1998, 131(2): 89-95.
    [7]
    AL-TABBAA A, BOES N. Pilot in situ auger mixing treatment of a contaminated site: Part 4. Performance at five years[J]. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 2002, 155(3): 187-202.
    [8]
    蔡国军, 邹海峰, 刘松玉, 等. 电阻率CPTU在某农药厂污染场地评价中的应用[J]. 工程地质学报, 2012, 20(5): 821-826. (CAI Guo-jun, ZOU Hai-feng, LIU Song-yu, et al. Application of resistivity CPTU in evaluation of contamination site for pesticide factory[J]. Journal of Engineering Geology, 2012, 20(5): 821-826. (in Chinese))
    [9]
    BRYSON L S, BATHE A. Determination of selected geotechnical properties of soil using electrical conductivity testing[J]. Geotechnical Test Journal, 2009, 32(3): 1-10.
    [10]
    RINALDI V A, CUESTAS G A. Ohmic conductivity of a compacted silty clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 824-835.
    [11]
    XIAO Lian-zhen, LI Zong-jin. New understanding of cement hydration mechanism through electrical resistivity measurement and microstructure investigations[J]. Journal of Materials in Civil Engineering, 2009, 21(8): 368-373.
    [12]
    LIU Song-yu, DU Yan-jun, HAN Li-hua. Experimental study on the electrical resistivity of soil-cement admixtures[J]. Environmental Geology, 2008, 54(6): 1227-1233.
    [13]
    LIU Song-yu, ZHANG Ding-wen, ZHU Zhi-duo. On the uniformity of deep mixed soil-cement columns with electrical resistivity method[J]. Geotechnical Special Publication, ASCE, 2009, 188: 140-149.
    [14]
    ZHANG Ding-wen, CHEN Lei, LIU Song-yu. Key parameters controlling electrical resistivity and strength of cement treated soils[J]. Journal of Central South University, 2012, 19(10): 2991-2998.
    [15]
    董晓强, 白晓红, 赵永强, 等. NaOH污染下水泥土的电阻率变化研究[J]. 岩土工程学报, 2007, 29(11): 1715-1719. (DONG Xiao-qiang, BAI Xiao-hong, ZHAO Yong-qiang, et al. Study on electrical resistivity of soil-cement polluted by NaOH[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1715-1719. (in Chinese))
    [16]
    ZHANG Ding-wen, CAO Zhi-guo, FAN Li-bin, et al. Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method[J]. Engineering Geology, 2014, 170: 80-88.
    [17]
    CHEN L, DU Y J, LIU S Y, et al. Evaluation of cement hydration properties of cement-stabilized lead-contaminated soils using electrical resistivity measurement[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2011, 15(4): 312-320.
    [18]
    CAMPANELLA R G, WEEMEES I. Development and use of an electrical resistivity cone for groundwater contamination studies[J]. Canadian Geotechnical Journal, 1990, 27(5): 557-567.
    [19]
    PANDEY B, KINRADE S D, CATALAN L J. Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes[J]. Journal of Environmental Management, 2012, 101: 59-67.
    [20]
    KOMINE H. Evaluation of chemical grouted soil by electrical resistivity[J]. Ground Improvement, 1997, 1(2): 101-113.
    [21]
    BOARDMAN D J. Lime stabilization: clay-metal-lime interactions[D]. Loughborough: Loughborough University, 1999.
    [22]
    廖晓勇, 崇忠义, 阎秀兰, 等. 城市工业污染场地: 中国环境修复领域的新课题[J]. 环境科学, 2011, 32(2): 784-794. (LIAO Xiao-yong, CHONG Zhong-yi, YAN Xiu-lan, et al. Urban industrial contaminated sites: a new issue in the field of environmental remediation in China[J]. Environmental Science, 2011, 32(2): 784-794. (in Chinese))
    [23]
    ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Petroleum Transactions of AIME, 1942, 146(1): 54-62.
    [24]
    KELLER G, FRISCHKNECHT F. Electrical methods in geophysical prospecting[M]. New York: Pergamon Press, 1966.
    [25]
    OH T, CHO G, LEE C. Effect of soil mineralogy and pore-water chemistry on the electrical resistivity of saturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(11): 0601401211-1-06014012-5.
  • Cited by

    Periodical cited type(15)

    1. 苗秋福. 高水平应力环境下层状岩体隧道稳定性分析. 公路交通科技. 2025(02): 196-206 .
    2. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 .
    3. 李元海,赵万勇,朱茂国,刘德柱,于恒. 软弱缓倾层状岩层隧道围岩结构变形与失稳机制试验研究. 采矿与安全工程学报. 2024(06): 1148-1157 .
    4. 申志福,徐琪尔,朱玲裕,王志华,高洪梅. 人工制备互层土的静三轴剪切力学特性研究. 岩土工程学报. 2023(04): 840-846 . 本站查看
    5. 赵雪,顾伟红. 基于人工蜂群优化支持向量机回归的隧道塌方风险预测. 科学技术与工程. 2023(09): 3997-4003 .
    6. 严志军. 公路隧道项目施工塌方成因及防控探讨. 交通科技与管理. 2023(09): 135-137 .
    7. 武靖勋. 某铁路隧道塌方综合处治技术. 国防交通工程与技术. 2023(05): 65-67+50 .
    8. 苗景川,肖鹏帅,洪富义,陈诺,李文杰,梁斌. 大凉山深埋软弱围岩公路隧道塌方机理及处治措施. 科学技术与工程. 2023(30): 13143-13149 .
    9. 李向峰. 软弱千枚岩塌方施工处理技术研究. 运输经理世界. 2022(15): 110-112 .
    10. 阮小勇,张佳. 顺层偏压隧道围岩破坏规律研究及施工控制技术. 科学技术创新. 2022(31): 158-161 .
    11. 耿启军. 富水全风化红砂岩地层隧道涌水涌砂机理及防治. 铁道建筑技术. 2022(12): 164-169 .
    12. 李荣锦,邹鑫,李荣建,林国强,白维仕,张瑾. 半嵌泥岩半覆黄土隧道模型试验及承载特性评价. 岩土工程学报. 2022(S1): 98-103 . 本站查看
    13. 王志杰,邱志洪,蔡李斌,张曾照,马兆飞,夏勇,徐海岩. 浩吉铁路阳城隧道全风化红砂岩围岩变形规律. 铁道建筑. 2021(09): 58-62 .
    14. 申志福,徐琪尔,朱玲裕,王志华,高洪梅. 重塑粉质黏土与粉砂互层土试样制备方法. 岩土工程学报. 2021(S2): 96-99 . 本站查看
    15. 王志杰,蔡李斌,邱志洪,芮小豪,马兆飞,程宏生,张曾照,徐海岩. 土砂互层隧道大变形控制技术研究——以浩吉铁路阳城隧道为例. 隧道建设(中英文). 2021(S2): 469-478 .

    Other cited types(22)

Catalog

    Article views PDF downloads Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return