• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016
Citation: FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016

Visual analysis of initiation of soil arching effect in piled embankments

More Information
  • Received Date: November 14, 2014
  • Published Date: September 17, 2015
  • “Soil arching effect” is known to improve the bearing capacity of piled embankments. The studies reported in literature on “soil arching effect” mainly focus on the numerical simulation methods, theoretical analysis and field application of prototype tests. In this study by using the traditional photoelastic testing procedures, the particulates 3 mm in diameter similar to those of polycarbonates are developed. The developed loading device and optical measurement mechanics image processing system are employed for visualization and obtaining the internal stress distribution in the embankments under various conditions. This is achieved by observing the rules of generation, distribution and changes in the internal force network of the model. The experimental results show that the height of fill significantly influences the formation and shape of soil arch. The oblique for chain is not able to close or even form the arch structure due to inadequate expansion space if the height of fill is too low. The soil arch transforms from triangular to semicircular or trapezoidal arch with the increasing height of fill. The load fluctuation has no influence on the emergence of the soil arching effect but significant influence on its structure and shape. The soil arch changes from triangular arch to semicircular arch or multiple arches with the increasing pile spacing ratio, and when the pile spacing ratio is greater than 3∶1, the soil arching effect starts to weaken and finally totally vanish. At this point, the bearing capacity of embankment substantially decreases.
  • [1]
    TERZAGHI K. Theoretical soil mechanics karl terzaghi[M]. New York: John Wiley & Sons, 1943: 66–75.
    [2]
    HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Engineering, 1988, 21(3): 12–18.
    [3]
    ZAESKE D, KEMPFERT H G. Berechnung and Wirkungsweise von unbewehr-ten und bewehrten mineralischen Tragschichten auf punktund linienf?rmigen Trag-gliedern[J]. Bauingenieur, 2002(77): 80–86.
    [4]
    刘吉福. 路堤下复合地基桩、土应力比分析[J]. 岩石力学与工程学报, 2003(4): 674–677. (LIU Ji-fu. Analysis on pile-soil stress ratio for composite ground under embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(4): 674–677. (in Chinese))
    [5]
    陈仁朋, 贾 宁, 陈云敏. 桩承式加筋路堤受力机理及沉降分析[J]. 岩石力学与工程学报, 2005(23): 4358–4367. (CHEN Ren-peng, JIA Ning, CHEN Yun-min. Mechanism and settlement analysis of pile-supported and geogrid-reinforced embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(23): 4358–4367. (in Chinese))
    [6]
    蒋良潍, 黄润秋, 蒋忠信. 黏性土桩间土拱效应计算与桩间距分析[J]. 岩土力学, 2006(3): 445–450. (JIANG Liang-wei, HUANG Run-qiu, JIANG Zhong-xin. Analysis of soil arching effect between adjacent piles and their spacing in cohesive soils[J]. Rock and Soil Mechanics, 2006(3): 445–450. (in Chinese))
    [7]
    CUNDALL P A, STRACK O D. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47–65.
    [8]
    郑俊杰, 赖汉江, 董友扣, 等. 桩承式路堤承载特性颗粒流细观模拟[J]. 华中科技大学学报(自然科学版), 2012(11): 43–47. (ZHENG Jun-jie, LAI Han-jiang, DONG You-kou, et al. Mesomechanical analysis of bearing characteristics of pile-supported embankment with particle flow code[J]. Journal Huazhong University of Science & Technology (Natural Science Edition), 2012(11): 43–47. (in Chinese))
    [9]
    许朝阳, 周 健, 完绍金. 桩承式路堤承载特性的颗粒流模拟[J]. 岩土力学, 2013(增刊1): 501–507. (XU Zhao-yang, ZHOU Jian, WAN Shao-jin. Rock and soil mechanics simulation of bearing characteristics of pile-supported embankments by particle flow code[J]. Rock and Soil Mechanics, 2013(S1): 501–507. (in Chinese))
    [10]
    费 康, 陈 毅, 王军军. 桩承式路堤土拱效应发挥过程研究[J]. 岩土力学, 2013(5): 1367–1374. (FEI Kang, CHEN Yi, WANG Jun-jun. Study of development of soil arching effect in piled embankment[J]. Rock and Soil Mechanics, 2013(5): 1367–1374. (in Chinese))
    [11]
    芮 瑞, 黄 成, 夏元友, 等. 砂填料桩承式路堤土拱效应模型试验[J]. 岩土工程学报, 2013(11): 2082–2089. (RUI Rui, HUANG Cheng, XIA Yuan-you, et al. Sand filling piled embankmentmodel tests and soil arching effects analysis[J]. Chinese Journal of Geotechnical Engineering, 2013(11): 2082–2089. (in Chinese))
    [12]
    TIEN H S, PAIKOWSKY S G. The arching mechanism on the micro level utilizing photoelastic particles[C]// Fourth Iternational Conference on Analysis of Discontinuous Deformation. Glasgow, 2001.
    [13]
    ESKI?AR T, OTANI J, HIRONAKA J. Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT[J]. Geotextiles and Geomembranes, 2012, 32(1): 44–54.
    [14]
    JESSOP H T, HARRIS F C. Photoelasticity principles and method[M]. London: Cleaver-Hume Press, 1950.
    [15]
    FROCHT M M. Photoelasticity (I)[M]. New York: John Wiley & Sons, Inc, 1941.
    [16]
    JONG G J, VERRUIJT A. étude photo-élastique d'un empilement de disques[M]. Nancy: Groupe Fran?aise de Rhéologie, 1969.
    [17]
    ALLERSMA H G. Optical analysis of stress and strain in photoelastic particle assemblies[D]. Netherlands: TU-Delft, 1987.
    [18]
    MAJMUDAR T S, BEHRINGER R P. Contact force measurements and stress-induced anisotropy in granular materials[J]. Nature, 2005, 435(7045): 1079–1082.
    [19]
    HARTLEY R R. Evolving force networks in deforming granular material [D]. Durham: Duke University, 2003.
    [20]
    HOWELL D W. Stress distribution and fluctuations in static and quasi-static granular systems[D]. Durham: Duke University, 1999.
    [21]
    杨荣伟, 程晓辉. 光弹颗粒材料的直剪试验研究[J]. 岩土力学, 2009(增刊1): 103–109. (YANG Rong-wei, CHENG Xiao-hui. Direct shear experiments of photoelastic granular materials[J]. Rock and Soil Mechanics, 2009(S1): 103–109. (in Chinese))
    [22]
    ZHOU J, LONG S, WANG Q, et al. Measurement of forces inside a three-dimensional pile of frictionless droplets[J]. Science, 2006, 312(5780): 1631–1633.
    [23]
    MAJMUDAR T S, SPERL M, LUDING S, et al. Jamming transition in granular systems[J]. Physical Review Letters, 2007, 98(5): 58001–58006.
  • Cited by

    Periodical cited type(7)

    1. 黄波林,殷跃平,李仁江,蒋树,秦臻,张鹏,闫国强. 滑坡涌浪综合防控工程措施研究进展与挑战. 工程地质学报. 2025(01): 159-170 .
    2. 刘红波,于磊,陈志华,陈再捷,庞富刚. 全钢集成式附着升降脚手架冲击性能研究. 施工技术(中英文). 2022(22): 72-79 .
    3. 王文沛,殷跃平,胡卸文,李滨,刘明学,祁小博. 碎屑流冲击下桩梁组合结构拦挡效果及受力特征研究. 地质力学学报. 2022(06): 1081-1089 .
    4. 范定坚,任曼妮. 约束空心混凝土柱抗侧向冲击动力性能. 辽宁工程技术大学学报(自然科学版). 2021(03): 214-219 .
    5. 陈伟,谢建斌,赵一锦,孙孝海,叶海涵,林煌超. 饱和沙土中高频液压振动沉桩敏感性因素分析. 哈尔滨商业大学学报(自然科学版). 2020(02): 214-218 .
    6. 王亚月. 钢砼叉桩动力响应模拟分析探究. 水利规划与设计. 2020(07): 102-108 .
    7. 任根立,王秀丽. 泥石流块石冲击下钢绞线网组合结构的动力响应模拟研究. 安全与环境工程. 2019(05): 85-93 .

    Other cited types(6)

Catalog

    Article views (346) PDF downloads (513) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return