QI Chang-guang, CHEN Yong-hui, WANG Xin-quan, LIU Gan-bin. Time effect of bearing capacity of plastic tube cast-in-place concrete piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1635-1643. DOI: 10.11779/CJGE201509010
    Citation: QI Chang-guang, CHEN Yong-hui, WANG Xin-quan, LIU Gan-bin. Time effect of bearing capacity of plastic tube cast-in-place concrete piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1635-1643. DOI: 10.11779/CJGE201509010

    Time effect of bearing capacity of plastic tube cast-in-place concrete piles

    More Information
    • Received Date: September 09, 2014
    • Published Date: September 17, 2015
    • Based on the installation mechanism of plastic tube cast-in-place concrete piles (TC pile), the method for time effect of bearing capacity of TC pile was established by employing both of the theories of cylindrical cavity expansion and contraction and radial consolidation. According to the field tests, the rationality of the time-effect theory for TC pile was comparatively studied. The results show that the calculated values of bearing capacities with time by considering the contraction of soils surrounding the TC pile shaft are consistent with the measured ones. However, the calculated values in different rest periods will be overestimated by 160%~300% compared with the measured ones as the contraction of soils is ignored.
    • [1]
      CHEN Y H, QI C G, XU H Y, et al. Field test research on embankment supported by plastic tube cast-in-place concrete piles[J]. Geotechnical and Geological Engineering, 2013, 31(4): 1359-1368.
      [2]
      CHEN R P, XU Z Z, CHEN Y M, et al. Field tests on pile-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(6): 777-785.
      [3]
      LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2007, 133(12): 1483-1493.
      [4]
      GANGAKHEDKAR R. Geosynthetic reinforced pile supported embankments[D]. Florida: University of Florida, 2004.
      [5]
      CORTLEVER N G. Design of double track railway on AuGeo piling system[C]// Symposium 2001 on Soft Ground Improvement and Geosynthetic Applications. Bangkok: AIT, 2011: 120-125.
      [6]
      ABDULLAH A, JOHN A N, ARULRAJAH A. Augeo pile system used as piled embankment foundation in soft soil environment[C]// Proceedings of the 2nd Conference on Advances in Soft Soil Engineering and Technology. Putrajaya, University Putra Malaysia, 2003: 703-714.
      [7]
      陈永辉, 齐昌广, 王新泉, 等. 塑料套管混凝土桩单桩承载特性研究[J]. 中国公路学报, 2012, 25(3): 51-58. (CHEN Yong-hui, QI Chang-guang, WANG Xin-quan, et al. Research on bearing performance of plastic tube cast-in-place single pile[J]. China Journal of Highway and Transport, 2012, 25(3): 51-59. (in Chinese))
      [8]
      齐昌广. 塑料套管现浇混凝土桩承载特性研究[D]. 南京: 河海大学, 2014. (QI Chang-guang. Research on bearing behavior of plastic tube cast-in-place concrete pile[D]. Nanjing: Hohai University, 2014. (in Chinese))
      [9]
      左殿军, 齐昌广, 张宇亭, 等. 塑料套管混凝土桩加固公路软土地基现场试验研究[J]. 岩土工程学报, 2013, 35(9): 1746-1752. (ZUO Dian-jun, QI Chang-guang, ZHANG Yu-ting, et al. Field tests on plastic tube cast-in-place concrete piles for reinforcing soft ground of highways[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1746-1752. (in Chinese))
      [10]
      BS8006 Code of practice for strengthened reinforced soils and other fills[S]. 1995.
      [11]
      SKOV R, DENVER H. Time dependence of bearing capacity of piles[C]// Proceedings of 3rd International Conference on the Application of Stress-Wave Theory to Piles. Bi-Tech Publishers, Ottawa, Ontario, 1988: 879-888.
      [12]
      SVINKIN M R, MORGANO C M, MORVANT M. Pile capacity as a function of time on clayey and sandy soils[C]// Proceedings of 5th International Conference on Piling and Deep Foundations, Deep Foundations Institute. Englewood Cliffs N J, 1994.
      [13]
      LONG J H, KERRIGAN J A, WYSOCKEY M H. Measured time effects for axial capacity of driven piling[J]. Journal of the Transportation Research Board, 1999(1663): 8-15.
      [14]
      YAN W M, YUEN K V. Prediction of pile set-up in clays and sands[C]// IOP Conference Series: Materials Science and Engineering. Sydney, 2010, 10(1): 1-8.
      [15]
      王戍平. 深厚软土中 PHC 长桩的时效性试验研究[J]. 岩土工程学报, 2003, 25(2): 239-241. (WANG Shu-ping. Study on time effect of PHC open-ended pile in deep soft soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 239-241. (in Chinese))
      [16]
      陈仁朋, 周万欢, 曹卫平, 等. 改进的桩土界面荷载传递双曲线模型及其在单桩负摩阻力时间效应研究中的应用[J]. 岩土工程学报, 2007, 29(6): 824-830. (CHEN Ren-peng, ZHOU Wan-huan, CAO Wei-ping. Improved hyperbolic model of load-transfer for pile-soil interface and its application in study of negative friction of single piles considering time effect[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 824-830. (in Chinese))
      [17]
      孔纲强, 杨 庆, 郑鹏一, 等. 考虑时间效应的斜桩基负摩阻力室内模型试验研究[J]. 岩土工程学报, 2009, 31(4): 617-621. (KONG Gang-qiang, YANG Qing, ZHENG Peng-yi, et al. Model tests on negative skin friction for inclined pile considering time effect[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 617-621. (in Chinese))
      [18]
      王家涛, 张明义. 基于时效性的静压管桩侧阻力计算[J]. 岩土工程学报, 2011, 33(增刊2): 287-290. (WANG Jia-tao, ZHANG Ming-yi. Computation of side resistance of jacked pipe piles based on time effect[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 287-290. (in Chinese))
      [19]
      HOULSBY G T, WITHERS N J. Analysis of the cone pressuremeter test in clay[J]. Géotechnique, 1988, 38(4): 573-587.
      [20]
      YU H S. Cavity expansion methods in geomechanics[M]. Dordrecht: Kluwer Academic, 2001.
      [21]
      YU H S, HOULSBY G T. A large strain analytical solution for cavity contraction in dilatant soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(11): 793-811.
      [22]
      GIRAUD A, HOMAND F, LABIOUSE V. Explicit solutions for the instantaneous undrained contraction of hollow cylinders and spheres in porous elastoplastic medium[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(3): 231-258.
      [23]
      ZHAO J, WANG G. Unloading and reverse yielding of a finite cavity in a bounded cohesive-frictional medium[J]. Computers and Geotechnics, 2010, 37(1/2): 239-245.
      [24]
      YU H S, HOULSBY G T. Finite cavity expansion in dilatant soils: loading analysis[J]. Géotechnique, 1991, 41(2): 173-183.
      [25]
      高子坤, 施建勇. 考虑桩体几何特征的压桩挤土效应理论解答研究[J]. 岩土工程学报, 2010, 32(6): 956-962. (GAO Zi-kun, SHI Jian-yong. Theoretical solutions of soil-squeezing effect due to pile jacking considering geometrical characteristics of a pile[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 956-962. (in Chinese))
      [26]
      刘维正, 石名磊, 徐林荣. 考虑软黏土结构性损伤的圆柱孔扩张弹塑性分析[J]. 岩土工程学报, 2013, 35(3): 487-494. (LIU Wei-zheng, SHI Ming-lei, XU Lin-rong. Elastoplastic analysis of cylindrical cavity expansion in natural sedimentary soft clay with structure damage[J] Chinese Journal of Geotechnical Engineering, 2013, 35(3): 487-494. (in Chinese))
      [27]
      KULHAWY F H. Limiting tip and side resistance[C]// Proceedings of Symposium on Analysis and Design of Pile Foundation, ASCE Convention. San Francisco, 1984: 80-98.
      [28]
      JGJ 94—2008 建筑桩基技术规范[S]. 2008. (JGJ 94—2008 Technical code for building pile foundation[S]. 2008. (in Chinese))
      [29]
      DAVISSON M T. High capacity piles[C]// Proceedings of Lecture Series on Innovations in Foundation Construction. Chicago: American Society of Civil Engineers, ASCE, Illinois Section, 1972: 81-112.
      [30]
      董金荣. 灌注桩侧阻力强化弱化效应研究[J]. 岩土工程学报, 2009, 31(5): 658-662. (DONG Jin-rong. Enhanced and weakened effect of skin friction of cast-in-situ piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 658-662. (in Chinese))
    • Related Articles

      [1]XU Bin, LIU Xin-rong, ZHOU Xiao-han, LIU Jun, HUANG Jun-hui, WANG Yan, ZENG Xi. Experimental study on dynamic response law of bedding rock slopes under deterioration of rock mass in hydro-fluctuation belt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1453-1462. DOI: 10.11779/CJGE202208010
      [2]ZHANG Qing-song, WANG De-ming, LI Shu-cai, ZHANG Xiao, TAN Ying-hua, WANG Kai. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. DOI: 10.11779/CJGE201703004
      [3]LI Yuan-hai, JING Hong-wen, CHEN Kun-fu, JIA Ran-xu. Development and applications of physical model test system with true triaxial loading unit for deep tunnels or roadways[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 43-52. DOI: 10.11779/CJGE201601003
      [4]LI Jia-wei, XU Jin, WANG Lu, YANG Hao-tian, YANG Zhi-yue. Water-rock coupling tests on mechanical properties of sandy slate rock mass[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 599-604.
      [5]LI Yong-bo, ZHANG Hong-ru, QUAN Ke-jiang. Development of model test system for dynamic frozen soil-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 774-780.
      [6]LIU Hanlong, TAN Huiming, PENG Jie, ZHANG Jianwei. Development of large scale pile foundation model test system[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 452-457.
      [7]YANG Heping, WAN Liang, ZHENG Jianlong. Development and application of large scale numerical control pullout test system[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1080-1084.
      [8]YU Boting, SUN Hongyue, SHANG Yuequan. Physical model simulation tests on seepage system in debris-containing clay slopes[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 705-708.
      [9]Design of servocontrolled cyclic triaxial test system by improvement on static triaxial test equipment[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 787-789.
      [10]Cai Yuejun, Liu Baochen, Cui Zhilian. Splitting Test for Marble Disc[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(3): 9-15.
    • Cited by

      Periodical cited type(6)

      1. 葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 .
      2. 陆世锋,韩子晶,许领,王逸翔,左璐. 重塑黄土渗气系数室内试验及尺寸效应研究. 工程地质学报. 2025(02): 407-415 .
      3. 王筱予,王丽琴,牛俊涛,吕旭东,邓国华,刘珏,石鹏鑫,王臻. 黄土结构性对其压缩-回弹变形特性的影响. 水利与建筑工程学报. 2024(04): 106-111+133 .
      4. 吕龙龙,廖红建,伏映鹏,夏龙飞,冷先伦. 基于应变能密度映射的黄土结构性参数研究. 岩石力学与工程学报. 2022(02): 399-411 .
      5. 王博,黄雪峰,邱明明,王寒. 延安新区黄土压缩特性试验研究. 水资源与水工程学报. 2022(02): 186-193 .
      6. 曹雪山,袁俊平,丁国权. 抽气现场试验的土工膜下盲沟气阻数值模拟研究. 岩土工程学报. 2022(10): 1780-1788 . 本站查看

      Other cited types(6)

    Catalog

      Article views (340) PDF downloads (402) Cited by(12)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return