• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Quan-sheng, HUANG Shi-bing, KANG Yong-shui, PAN Yang, CUI Xian-ze. Numerical and theoretical studies on frost heaving pressure in a single fracture of frozen rock mass under low temperature[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1572-1580. DOI: 10.11779/CJGE201509003
Citation: LIU Quan-sheng, HUANG Shi-bing, KANG Yong-shui, PAN Yang, CUI Xian-ze. Numerical and theoretical studies on frost heaving pressure in a single fracture of frozen rock mass under low temperature[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1572-1580. DOI: 10.11779/CJGE201509003

Numerical and theoretical studies on frost heaving pressure in a single fracture of frozen rock mass under low temperature

More Information
  • Received Date: October 28, 2014
  • Published Date: September 17, 2015
  • The frost heaving pressure is induced by water-ice phase transition in water-bearing crack for rock mass at low temperature, which may cause modeⅠcrack propagation. Based on the elastic mechanics, seepage mechanics and phase transition theory, an analytical model for frost heaving pressure in a single fracture is established considering moisture migration. This pressure not only reduces rapidly with the increase of moisture migration flux, but also changes with the mechanical parameters of rock and ice. The crack-tip stress fields under coupled thermal-mechanical condition are simulated by the method of equivalent coefficient of thermal expansion considering water-ice phase transition in crack under low temperature. The numerical solutions of frost heaving pressure and crack-tip stresses are compared with the calculated values from theoretical model. The results show that the analytical solutions are in good agreement with the numerical ones. Then the based on with the fracture mechanics, by using the stress extrapolation method, the numerical solutions of stress intensity factor are obtained, which also coincide well with the analytical and semi-analytical ones. Finally, the numerical simulation method of using the equivalent coefficient of thermal expansion is validated by an example. This study can be a reference for further studies on the damage mechanism and frost propagation of fractured rock mass under freeze-thaw.
  • [1]
    罗彦斌. 寒区隧道冻害等级划分及防治技术研究[D]. 北京: 北京交通大学, 2010. (LUO Yan-bin. Study on frost damage grades and its prevention and control technologies in cold region tunnel[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese))
    [2]
    MATSUOKA N. Microgelivation versus macrogelivation: towards bridging the gap between laboratory and field frost weathering[J]. Permafrost and Periglacial Processes, 2001, 12(3): 299-313.
    [3]
    李杰林, 周科平, 张亚民, 等. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1208-1214. (LI Jie-lin, ZHOU Ke-ping, ZHANG Ya-min, et al. Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1208-1214. (in Chinese))
    [4]
    周科平, 李杰林, 许玉娟, 等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 2012, 31(4): 731-737. (ZHOU Ke-ping, LI Jie-lin, XU Yu-juan, et al. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 731-737. (in Chinese))
    [5]
    周科平, 李杰林, 许玉娟, 等. 基于核磁共振技术的岩石孔隙结构特征测定[J]. 中南大学学报 (自然科学版), 2012, 43(12): 4796-4800. (ZHOU Ke-ping, LI Jie-lin, XU Yu-juan, et al. Measurement of rock pore structure based on NMR technology[J]. Journal of Central South University (Science and Technology), 2012, 43(12): 4796-4800. (in Chinese))
    [6]
    许玉娟, 周科平, 李杰林, 等. 冻融岩石核磁共振检测及冻融损伤机制分析[J]. 岩土力学, 2012, 33(10): 3001-3006. (XU Wen-juan, ZHOU Ke-ping, LI Jie-lin, et al. Study of rock NMR experiment and damage mechanism analysis under freeze-thaw condition [J]. Rock and Soil Mechanics, 2012, 33(10): 3001-3006. (in Chinese))
    [7]
    杨更社, 蒲毅彬, 马 巍. 寒区冻融环境条件下岩石损伤扩展研究探讨[J]. 试验力学, 2002, 17(2): 220-226. (YANG Geng-she, PU Yi-bin, MA Wei. Discussion on the damage propagation for the rock under the frost and thaw condition of frigid zone[J]. Journal of Experimental Mechanics, 2002, 17(2): 220-226. (in Chinese))
    [8]
    杨更社, 张全胜, 蒲毅彬. 冻融条件下岩石损伤扩展特性研究[J]. 岩土工程学报, 2005, 26(6): 838-842. (YNAG Geng-she, ZHANG Quan-sheng, PU Yi-bin. A study on the damage propagation characteristics of rock under the frost and thaw condition[J]. Chinese Journal of Geotechnical Engineering, 2005, 26(6): 838-842. (in Chinese))
    [9]
    杨更社, 张全胜, 任建喜, 等. 冻结速度对铜川砂岩损伤 CT 数变化规律研究[J]. 岩石力学与工程学报, 2004, 23(24): 4099-4104. (YANG Geng-she, ZHANG Quan-sheng, REN Jian-xi, et al. Study on the effect of freezing rate on the damage CT values of Tongchuan sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4099-4104. (in Chinese))
    [10]
    张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476. (ZHANG Hui-mei, YANG Geng-she. Research on damage model of rock under coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476. (in Chinese))
    [11]
    刘泉声, 康永水, 黄 兴, 等. 裂隙岩体冻融损伤关键问题及研究状况[J]. 岩土力学, 2012, 33(4): 971-978. (LIU Quan-sheng, KANG Yong-shui, HUANG Xin, et al. Critical problems of freeze-thaw damage in fractured rock and their research status[J]. Rock and Soil Mechanics, 2012, 33(4): 971-978. (in Chinese))
    [12]
    谭贤君, 陈卫忠, 贾善坡, 等. 含相变低温岩体水热耦合模型研究[J]. 岩石力学与工程学报, 2008, 27(7): 1455-1461. (TAN Xian-jun, CHEN Wei-zhong, JIA Shan-po, et al. A coupled hydro-thermal model for low temperature rock including phase change[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1455-1461. (in Chinese))
    [13]
    徐 彬, 闫 娜, 李 宁, 等. 温降对液化石油气储库围岩裂隙开裂影响的数值分析[J]. 岩石力学与工程学报, 2011, 30(4): 718-726. (XU Bin, YAN Na, LI Ning, et al. Numerical analysis of effect of temperature decreasing on crack of chilled LPG unlined storage cavern[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 718-726. (in Chinese))
    [14]
    李新平, 路亚妮, 王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩石力学与工程学报, 2013, 32(11): 2307-2315. (LI Xin-ping, LU Ya-ni, WANG Yang-jun. Research on damage model of single jointed rock masses under coupling action of freeze-thaw and loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2307-2315. (in Chinese))
    [15]
    路亚妮, 李新平, 吴兴宏. 三轴压缩条件下冻融单裂隙岩样裂缝贯通机制[J]. 岩土力学, 2014, 35(6): 1579-1584. (LU Ya-ni, LI Xin-ping, WU Xing-hong. Fracture coalescence mechanism of single flaw rock specimen due to freeze-thaw under triaxial compression[J]. Rock and Soil Mechanics, 2014, 35(6): 1579-1584. (in Chinese))
    [16]
    任建喜. 冻结裂隙岩石加卸载破坏机理 CT 实时试验[J]. 岩土工程学报, 2004, 26(5): 641-644. (REN Jian-xi. Real-time CT test of damage failure mechanism of frozen cracked rock in loading and unloading condition[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 641-644. (in Chinese))
    [17]
    DAVIDSON G P, NYE J F. A photoelastic study of ice pressure in rock cracks[J]. Cold Regions Science and Technology, 1985, 11(2): 141-153.
    [18]
    WINKLER E M. Frost damage to stone and concrete: geological considerations[J]. Engineering Geology, 1968, 2(5): 315-323.
    [19]
    AROSIO D, LONGONI L, MAZZA F, et al. Freeze-thaw cycle and rockfall monitoring[M]//Landslide Science and Practice. Springer Berlin Heidelberg, 2013: 385-390.
    [20]
    刘泉声, 黄诗冰, 康永水, 等. 裂隙岩体冻融损伤研究进展与思考[J]. 岩石力学与工程学报, 2015, 34(3): 452-471. (LIU Quan-sheng, HUANG Shi-bing, KANG Yong-shui, et al. Advance and review on damage of fractured rock mass under freeze-thaw[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 452-471. (in Chinese))
    [21]
    刘泉声, 康永水, 刘小燕. 冻结岩体单裂隙应力场分析及热-力耦合模拟[J]. 岩石力学与工程学报, 2011, 30(2): 217-223. (LIU Quan-sheng, KANG Yong-shui, LIU Xiao-yan. Analysis of stress field and coupled thermo-mechanical simulation of single-fracture freezed rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 217-225. (in Chinese))
    [22]
    徐光苗, 刘泉声, 张秀丽. 冻结温度下岩体 THM 完全耦合的理论初步分析[J]. 岩石力学与工程学报, 2004, 23(21): 3709-3713. (XU Guang-miao, LIU Quan-sheng, ZHANG Xiu-li. Theoretical analysis on full thermo-hydro- mechanical coupling for rocks under freezing temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3709-3713. (in Chinese))
    [23]
    DÖPPENSCHMIDT A, BUTT H J. Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy[J]. Langmuir, 2000, 16(16): 6709-6714.
    [24]
    阳友奎, 肖长富. 水力压裂裂缝形态与缝内压力分布[J]. 重庆大学学报 (自然科学版), 1995, 18(3): 20-26. (YANG You-kui, XIAO Chang-fu, QIU Xian-de, et al. Fracture geometry and pressure distribution in fracture for hydrofracturing[J]. Journal of Chongqing University (Natural Science), 1995, 18(3): 20-26. (in Chinese))
    [25]
    李宗利, 任青文, 王亚红. 岩石与混凝土水力劈裂缝内水压分布的计算[J]. 水利学报, 2005, 36(6): 656-661. (LI Zong-li, REN Qing-wen, WANG Ya-hong. Formula for water pressure distribution in rock or concrete fracture formed by hydraulic fracturing[J]. Journal of Hydraulic Engineering, 2005, 36(6): 656-661. (in Chinese))
    [26]
    张玉军. 模拟冻-融过程的热-水-应力耦合模型及数值分析[J]. 固体力学学报, 2009, 30(4): 409-415. (ZHANG Yu-jun. Coupled thermo-hydro-mechanical model and numerical analysis for simulation of freezing-thawing process[J]. Chinese Journal of Solid Mechanics, 2009, 30(4): 409-415. (in Chinese))
    [27]
    于天来, 袁正国, 黄美兰. 河冰力学性能试验研究[J]. 辽宁工程技术大学学报 (自然科学版), 2009, 28(6): 937-940. (YU Tian-lai, YUAN Zheng-guo, HUANG Mei-lan. Experimental study on mechanical behavior of river ice[J]. Journal of Liaoning Technical University (Natural Science), 2009, 28(6): 937-940. (in Chinese))
    [28]
    梁拥成, 刘一华, 刘小妹. 一种确定应力强度因子的数值方法[J]. 合肥工业大学学报 (自然科学版), 2003, 26(4): 546-549. (LINAG Yong-cheng, LIU Yi-hua, LIU Xiao-mei. A numerical method for determination of a stress intensity factor[J]. Journal of Hefei University of Technology (Nature Science), 2003, 26(4): 546-549. (in Chinese))
    [29]
    中国航空研究院. 应力强度因子手册[J]. 北京: 科学出版社, 1981. (China Research Institute of Aeronautics. Handbook of stress intensity factor[M]. Beijing: Science Press, 1981. (in Chinese))
  • Related Articles

    [1]Analytical solution for dynamic interaction of end-bearing pile groups subjected to horizontal dynamic loads[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240837
    [2]ZHENG Chang-jie, CUI Yi-qin, DING Xuan-ming, LUAN Lu-bao. Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005
    [3]FAN Hai-shan, ZHANG Jun-hui, ZHENG Jian-long. Analytical solution for dynamic response of asphalt pavement with subgrade modulus varying with depth[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1016-1026. DOI: 10.11779/CJGE202206005
    [4]YU Hai-tao, LI Xin-xi, LI Pan. Analytical solution for dynamic response of curved tunnels under travelling wave effect[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 69-76. DOI: 10.11779/CJGE202101008
    [5]WANG Teng, DU Bao-ping. Analytical solution for penetration response of steel catenary riser at touchdown zone on bilinear seabed[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1676-1683. DOI: 10.11779/CJGE201809014
    [6]GUO Xiao, XIE Kang-he, Lü Wen-xiao, DENG Yue-bao. Analytical solutions for consolidation by vertical drains with variation of well resistance with depth and time[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 996-1001. DOI: 10.11779/CJGE201506004
    [7]DONG Xin-ping, XIE Feng-zan. Analytical solution of segment joint model for segmented tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1870-1875.
    [8]LI Ning, XU Jian-cong. Analytical solutions for rainfall infiltration into homogenous infinite slopes[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2325-2330.
    [9]LIU Hanlong, DING Xuanming. Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1611-1617.
    [10]LIANG Jianwen, ZHANG Hao, Vincent W. LEE. An analytical solution for dynamic stress concentration of underground cavities under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 815-819.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return