• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZOU Hang, LIU Jian-feng, BIAN Yu, ZHOU Zhi-wei, ZHUO Yue. Experimental study on mechanical and permeability properties of sandstone with different granularities[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1462-1468. DOI: 10.11779/CJGE201508015
Citation: ZOU Hang, LIU Jian-feng, BIAN Yu, ZHOU Zhi-wei, ZHUO Yue. Experimental study on mechanical and permeability properties of sandstone with different granularities[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1462-1468. DOI: 10.11779/CJGE201508015

Experimental study on mechanical and permeability properties of sandstone with different granularities

More Information
  • Received Date: November 15, 2014
  • Published Date: August 24, 2015
  • In order to investigate and reveal the influence of granularity on mechanical behavior and permeability characteristics of sandstone, the conventional triaxial tests and triaxial compression and penetration tests are conducted on coarse sandstone, medium sandstone and fine sandstone of a project by using the MTS815 Flex Test GT rock mechanics test system. The researches show that the strength of sandstone and the parameters of shear strength, cohesion c and internal friction angle φ, increase with the decrease of granularity. The strength of sandstone has a decrease of the range between 5.15% and 24.66%. The permeability varies according to the characteristics of deformation: at the elastic stage, the holes inside the sandstone are compacted and the permeability decreases; at the elastic-plastic stage, the permeability increases slowly at first, and then moves up sharply and reaches the maximum value at the post-peak; finally, permeability decreases. The permeability of sandstone with the same granularity decreases with the increase of confining pressure, and the permeabilities of all samples under different confining pressures can be drawn as a linear function. Under the same confining pressure, there is a magnitude difference between the permeabilities of sandstone with different granularities. As for the overall performance of permeability, the permeability of the coarse sandstone is about 105 times that of the medium sandstone, and the permeability of the medium sandstone is about 10 times that of the fine sandstone.
  • [1]
    黄先伍, 唐 平, 缪协兴, 等. 破碎砂岩渗透特性与孔隙率关系的试验研究[J]. 岩土力学, 2005, 26(9): 1385-1388. (HUANG Xan-wu, TANG Ping, MIU Xie-xing, et al. Testing study on seepage properties of broken sandstone[J]. Rock and Soil Mechanics, 2005, 26(9): 1385-1388. (in Chinese))
    [2]
    康 瀚. 不同粒径砂岩三轴压缩力学特性试验研究[J]. 路基工程, 2013(6): 94-96. (KANG Hang. Experimental study on mechanical characteristics of triaxial compression of sandstone in different size[J]. Subgrage Engineering, 2013(6): 94-96.(in Chinese))
    [3]
    王小江, 荣 冠, 周创兵. 粗砂岩变形破坏过程中渗透性试验研究[J]. 岩石力学与工程学报, 2012, 31(A01): 2940-2947. (WANG Xiao-jiang, RONG Guan, ZHOU Chuang-bing. Permeability experimenteral study of gritstone in deformation and failure process[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(A01): 2940-2947. (in Chinese))
    [4]
    张守良, 沈 琛, 邓金根. 岩石变形及破坏过程中渗透率变化规律的实验研究[J]. 岩石力学与工程学报, 2000(增刊1): 885-888. (ZHANG Shou-liang, SHEN Chen, DENG Jin-gen. Testing study on the law of permeability variation in process of rock deformation and damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2000(S1): 885-888. (in Chinese))
    [5]
    王环玲, 徐卫亚, 杨圣奇. 岩石变形破坏过程中渗透率演化规律的试验研究[J]. 岩土力学, 2006, 27(10): 1703-1708. (WANG Huan-ling, XU Wei-ya, YANG Sheng-qi. Experimental investigation on permeability evolution law during course of deformation and failure of rock specimen[J]. Rock and Soil Mechanics, 2006, 27(10): 1703-1708. (in Chinese))
    [6]
    李佳伟, 徐 进, 王 璐, 等. 砂板岩岩体力学特性的水岩耦合试验研究[J]. 岩土工程学报, 2013, 35(3): 599-604. (LI Jia-wei, XU Jin, WANG Lu, et al. Water-rock coupling tests on mechanical properties of sandy slate rock mass[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 599-604.(in Chinese))
    [7]
    李世平, 李玉寿, 吴振业. 岩石全应力应变过程对应的渗透率-应变方程[J]. 岩土工程学报, 1995, 17(2): 13-19. (LI Shi-ping, LI Yu-shou, WU Zhen-ye. The permeability strain equations relating to complete stress-strain path of the rock[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 13-19. (in Chinese))
    [8]
    LI S P, WU D X, XIE W H, et al. Effect of confining pressure, pore pressure and specimen dimension on permeability of Yinzhuang sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 435-441.
    [9]
    韩铁林, 陈蕴生, 宋勇军, 等. 不同应力路径下砂岩力学特性的试验研究[J]. 岩石力学与工程学报, 2012, 31(A02): 3959-3966. (HAN Tie-lin, CHEN Yun-sheng, SONG Yong-jun, et al. Experimental study of mechanical characteristics of sandstone under different loading paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(A02): 3959-3966. (in Chinese))
    [10]
    JIANG J Q, YANG G L. Field tests on mechanical characteristics and strength parameters of red-sandstone[J]. Journal of Central South University of Technology, 2010, 17(2): 381-387.
    [11]
    曹广祝, 仵彦卿, 丁卫华. 低渗透压力条件下砂岩渗透性质的CT试验[J]. 煤田地质与勘探, 2005, 33(4): 59-62. (CAO Guang-zhu, WU Yan-qing, DING Wei-hua. Permeability experiment of sandstone under low seepage pressures by X-ray CT test[J]. Coal Geology & Exploration, 2005, 33(4): 59-62. (in Chinese))
    [12]
    李小琴, 李文平, 李洪亮, 等. 砂岩峰后卸除围压过程的渗透性试验研究[J]. 工程地质学报, 2005, 13(4): 481-484. (LI Xiao-qin, LI Wen-ping, LI Hong-liang, et al. Experimental Study on permeability of sandstone during post-peak unloading of the confining pressure[J]. Journal of Engineering Geology, 2005, 13(4): 481-484. (in Chinese))
    [13]
    王贵荣, 任建喜. 基于三轴压缩试验的红砂岩本构模型[J].长安大学学报(自然科学版), 2006, 26(6): 48-51. (WANG Gui-rong, REN Jian-xi. Constitutive model of red sandstone based on triaxial compression test[J]. Journal of Chang'an University (Natural Science Edition), 2006, 26(6): 48-51. (in Chinese))
    [14]
    GB/T50266—99 工程岩体试验方法标准[S]. 1999. (GB/T50266—99 Standard for tests method of engineering rock massas[S]. 1999. (in Chinese))
    [15]
    SL264—2001 水利水电工程岩石试验规程[S]. 2001. (SL264—2001 Specifications for rock tests in water conservancy and hydroelectric engineering[S]. 2001. (in Chinese)) .
    [16]
    DL/T5368—2007 水电水利工程岩石试验规[S]. 2007. (DL/T5368—2007 Code for rock tests hydroelectric and water conservancy engineering[S]. 2007. (in Chinese)) .
    [17]
    彭苏萍, 屈洪亮, 罗立平, 等. 沉积岩石全应力应变过程的渗透性试验研究[J]. 煤炭学报, 2000, 25(2): 113-116. (PENG Su-ping, QU Hong-liang, LUO Li-ping, et al. An experimental study on the penetrability of sedimentary rock during the complete stress-strain path[J]. Journal of China Coal Society, 2000, 25(2): 113-116. (in Chinese))
  • Related Articles

    [1]LIU Zhixia, GUO Chengchao, ZHU Honghu, CAO Dingfeng, HUANG Rui, WANG Fuming, DONG Pu. Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2319-2326. DOI: 10.11779/CJGE20220985
    [2]JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029
    [3]XU Jie, HU Hai-tao, ZHENG Zhi. Effects of compaction and water content on thermal conductivity of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048
    [4]HE Zuo-yue, ZHANG Sheng, TENG Ji-dong, YAO Yang-ping, SHENG Dai-chao. Vapour transfer and its effects on water content in freezing soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1190-1197. DOI: 10.11779/CJGE201807004
    [5]OU Chuan-jing, WEI Chang-fu, YAN Rong-tao, LU You-qian, GUO Jing-lin. Experimental tests on relationship between suction and water content of remolded lateritic clay in Guangxi under high suction[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 32-36. DOI: 10.11779/CJGE2015S2007
    [6]CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002
    [7]ZHANG Peng-cheng, TANG Lian-sheng, DENG Zhong-wei, JIANG Li-qun. Quantitative relationship between wet suction and water content of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1453-1457.
    [8]DENG Jianhua, HUANG Xingchun, PENG jiebing, CHEN Bingxiang. Mechanical properties of Gypsum Breccia with different water contents[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1203-1207.
    [9]LIU Bin, NIE Dexin. Study on relation between strength parameter and water content of gouge[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2164-2167.
    [10]LIANG Zhigang, CHEN Yunmin, CHEN Yun. Measurement of water content of unsaturated soil by TDR technique[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 191-195.
  • Cited by

    Periodical cited type(5)

    1. 覃浩军,王利杰,蒲国庆,叶坤,周雄雄,王刚. 基于反演参数的高心墙堆石坝蓄水变形研究. 大坝与安全. 2025(01): 47-54 .
    2. 张毅,陈敬江. 基于动力计算的震区水库土石坝稳定性及安全评价研究. 水利科技与经济. 2023(06): 6-10+15 .
    3. 张宏洋,韩鹏举,马聪,陶元浩,李桐,丁泽霖,韩立炜,张先起,张宪雷. 基于改进粒子群算法的土石坝动力参数反演研究. 水利水电技术(中英文). 2023(06): 110-123 .
    4. 张宏洋,李桐,杨益格,丁泽霖,张先起,汪顺生. 基于模态分解和云粒子网络的大坝基岩地震动输入研究. 水利学报. 2023(06): 749-761 .
    5. 王茂华,迟世春,周雄雄. 基于地震记录和SSI方法的高土石坝模态识别. 岩土工程学报. 2021(07): 1279-1287 . 本站查看

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return