• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Jing-pei, LI Lin, SUN De-an, TANG Jian-hua. Theoretical study on sinking resistance of jacked piles in saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1454-1461. DOI: 10.11779/CJGE201508014
Citation: LI Jing-pei, LI Lin, SUN De-an, TANG Jian-hua. Theoretical study on sinking resistance of jacked piles in saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1454-1461. DOI: 10.11779/CJGE201508014

Theoretical study on sinking resistance of jacked piles in saturated soft clay

More Information
  • Received Date: October 27, 2014
  • Published Date: August 24, 2015
  • Based on the SMP criterion-based Cam-clay model, which can incorporate the over consolidation ratio and properly describe soil strength in three-dimensional stresses state, the cavity expansion solutions are derived under undrained conditions by using the stress transformed method. Then, according to the pile-sinking mechanism in the saturated layered soft clay and considering the influence range of the pile tip, the stress fields around the pile tip and pile shaft during the pile-sinking process are modeled as spherical cavity and cylindrical cavity expansion respectively, and the methods for calculating the pile-sinking resistance in the layered soft clay are yielded. To verify the validity of predictions using this new expression, the results are compared with the measured data, and the influence factors for pile-sinking resistance are discussed. The results show that the proposed method can predict the pile-sinking resistance accurately because the 3D strength characteristics of soils are sufficiently considered by the constitutive model. Compared with the pile tip resistance, the pile shaft resistance is relatively small, the pile-sinking resistance in saturated soft clay mainly consists of pile tip resistance, and the influence range of the pile tip resistance depends on the pile diameter and the soil properties. Both the pile tip resistance and pile shaft resistance are significantly influenced by the pile diameter and the over consolidation ratio. In addition, the pile-sinking resistance is slightly influenced by the effective internal friction angle.
  • [1]
    VESIC A S. Expansion of cavity in infinite soil mass[J]. Journal of Soil Mechanics Foundation Division, American Society of Civil Engineering, 1972, 98(3): 265-289.
    [2]
    SAGASET A C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320.
    [3]
    SAGASET A C. Prediction of ground movements due to pile-driving in clay[J]. Journal of Geotechnical and Geo-environmental Engineering, 2001, 127(1): 55-66.
    [4]
    李雨浓, 李镜培, 赵仲芳. 基于静力触探试验的静压桩沉桩阻力估算[J]. 路基工程, 2010(3): 67-69. (LI Yu-nong, LI Jing-pei, ZHAO Zhong-fang. Estimation of resistance of static pressure pile sinking based on cone penetration test[J]. Subgrade Engineering, 2010(3): 67-69. (in Chinese))
    [5]
    张明义, 邓安福. 静压桩贯入地基的球孔扩张–滑动摩擦计算模式[J]. 岩土力学, 2003, 24(5): 701-709. (ZHANG Ming-yi, DENG An-fu. A spherical cavity expansion-sliding friction calculation model on penetration of pressed-in piles[J]. Rock and Soil Mechanics, 2003, 24(5): 701-709. (in Chinese))
    [6]
    刘俊伟, 张明义. 赵洪福, 等. 基于球孔扩张理论和侧阻力退化效应的压桩力计算模拟[J]. 岩土力学, 2009, 30(4): 1181-1185. (LIU Jun-wei, ZHANG Ming-yi, ZHAO Hong-fu, et al. Computational simulation of jacking force based on spherical cavity expansion theory and friction fatigue effect[J]. Rock and Soil Mechanics, 2009, 30(4): 1181-1185. (in Chinese))
    [7]
    杨庆光, 刘 杰, 何 杰, 等. 楔形与等截面静压桩沉桩贯入阻力对比研究[J].岩土工程学报, 2013, 35(5): 897-901. (YANG Qing-guang, LIU Jie, HE Jie, et al. Comparative research on penetration resistance of jacked tapered piles and uniform section piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 897-901. (in Chinese))
    [8]
    SUN D A, MATSUOKA H, YAO Y P. An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis[J]. Computers and Geotechnics, 2004, 31(1): 37-46.
    [9]
    YAO Y P, SUN D A. Application of Lade’s criterion to Cam-clay model[J]. Journal of Engineering Mechanics, ASCE, 2000, 126(1): 112-119.
    [10]
    SUN D A, MATSUOKA H, YAO Y P. An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis[J]. Computers and Geotechnics, 2004, 31(1): 37-46.
    [11]
    MATSUOKA H, SUN DA, The SMP Concept-based 3D Constitutive Models for Geomaterials[M]. London: Taylor & Francis, 2006.
    [12]
    姚仰平, 侯 伟. 土的基本力学特性极其弹塑性描述[J]. 岩土力学, 2009, 30(10): 2881-2902. (YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. Rock and Soil Mechanics, 2009, 30(10): 2881-2902. (in Chinese))
    [13]
    姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学(E 辑), 2004, 34(11): 1283-1299. (YAO Yang-ping, LU De-chun, ZHOU Aan-nan, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China (Ser E), 2004, 34(11): 1283-1299. (in Chinese))
    [14]
    RANDOLPH M F, CATER J P, WROTH C P. Driven piles in clay-the effects of installation and subsequent consolidation[J]. Géotechnique, 1979, 29(4): 361-393.
    [15]
    CATER J P, RANDOLPH M F, WROTH CP. Stress and pore pressure changes in clay during and after the expansion of a cylindrical cavity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(4): 305-322.
    [16]
    RANDOLPH M F. Science and empiricism in pile foundation design[J]. Géotechnique, 2003, 53(10): 847-875.
    [17]
    MATSUOKA H, YAO Y P, SUN D A. The Cam-clay model revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95.
    [18]
    CAO LF, TEH CI, CHANG MF. Undrained cavity expansion in modified Cam clay I: theoretical analysis[J]. Géotechnique, 2001, 51(4): 323-334.
    [19]
    ROY M, BLANCHET R, TAVENAS F, et al. Behaviour of a sensitive clay during pile driving[J]. Canadian Geotechnical Journal, 1981, 18: 67-85.
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views (629) PDF downloads (350) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return