• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZOU Wei-lie, CHEN Lun, ZHANG Jun-feng, LIU Xiao-shun, TONG Zhao-xia. Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1418-1425. DOI: 10.11779/CJGE201508009
Citation: ZOU Wei-lie, CHEN Lun, ZHANG Jun-feng, LIU Xiao-shun, TONG Zhao-xia. Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1418-1425. DOI: 10.11779/CJGE201508009

Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress

More Information
  • Received Date: October 10, 2014
  • Published Date: August 24, 2015
  • A series of typical triaxial compression tests are conducted on simulant lunar soil QH-E, which is originated from cinerite from Jingyu County, Jilin Province and is developed by Tsinghua University. For the triaxial compression tests on QH-E under low confining stress, highly sensitive transducers are used to measure the volume change in the water surrounding the triaxial test specimen and to control the confining stress. The test results indicate that the QH-E under low confining stresses (3.13~25 kPa) shows the conspicuous dilatancy behavior. Compared with the results from the conventional confining stresses (50~150 kPa), the peak friction angle of QH-E under low confining stresses is larger. The higher the relative density of QH-E, the larger the peak friction angle. Both the tangent modulus and the shear modulus of QH-E decrease with the decrease of the confining stress and relative density, while the dilatancy angle increases with the decrease of the confining stress and the increase of the relative density. Moreover, under low confining stresses the differences of the properties between the QH-E in this study and the saturated sands in the literatures, and the influences of both the moon/terrestrial environments and water in pressure chamber on the properties of QH-E, are discussed.
  • [1]
    HEIKEN Grant, VANIMAN David, BEVAN M French. Lunar sourcebook: a user's guide to the moon[M]. Cambridge: Cambridge University Press, 1991: 475-594.
    [2]
    CARRIER W David. The four things you need to know about the geotechnical properties of lunar soil[R]. Florida: Lunar Geotechnical Institute, 2005.
    [3]
    CARRIER W David. Particle size distribution of lunar soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 956-959.
    [4]
    RICHMAN D, HOELZER H, CARPENTER P, et al. A quantitative method for evaluating regolith stimulants[C]// Space Technology and Applications Int. Forum—STAIF 2007, New York: AIP Publishing, 957 - 963.
    [5]
    DAVID S Mckay, JAMES L Carter, WALTER W Boles, et al. JSC-1: a new lunar soil simulant[C]// Proceeding of Engineering, Construction, and Operations in Space. Vol. IV, ASCE Publishing, 1994: 857-866.
    [6]
    WILLMAN B M, BOLES W B, MCKAY D S, et al. Properties of lunar soil simulant JSC-1[J]. Journal of Aerospace Engineering, 1995, 8(2): 77-87.
    [7]
    KLOSKY J Ledlie, STURE Stein, KO Hon-Yim, et al. Geotechnical behavior of JSC-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2000, 13 (4): 133-138.
    [8]
    ALSHIBLI Khalid A, HASAN Alsidqi. Strength properties of JSC-1A lunar regolith simulant[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 673-679.
    [9]
    MATTHEW R Everingham, NICHOLAS Pelster, ROBERT P Mueller, et al. Preparation and handling large quantities of JSC-1a lunar regolith simulant for the 2007 regolith excavation challenge[C]// Space Technology and Applications International Forum-STAIF 2008, New York: AIP publishing, 2008: 268-273.
    [10]
    RAME E, WIKINSON A, ELLIOT A, et al. Flowability of JSC-1a[R]. Ohio: National Center for Space Exploration Research, 2010.
    [11]
    HAYDAR Arslan, SUSAN Batiste, STEIN Sture. Engineering properties of lunar soil simulant JSC-1A[J]. Journal of Aerospace Engineering, 2010, 23(1): 70-83.
    [12]
    ZHENG Yong-chun, WANG Shi-jie, FENG Jun-ming, et al. CAS-1 simulated lunar soil[J]. Acta Mineralogical Sinica. 2007, 27(3/4): 571-578.
    [13]
    ZHENG Yong-chun, WANG Shi-jie, OUYANG Zi-yuan, et al. CAS-1 lunar soil simulant[J]. Advances in Space Research, 2009, 43: 448-454.
    [14]
    LI Yong-quan, LIU Jian-zhong, YUE Zong-yu. NAO-1: lunar highland soil simulant developed in China[J]. Journal of Aerospace Engineering, 2009, 21(1): 53-57.
    [15]
    肖 龙, 贺新星, 吴 涛, 等. 月壤的性质与模拟月壤CUG-1A [C]// 中国空间科学学会第七次学术年会. 大连, 2009. (XIAO Long, HE Xin-xing, WU Tao, et al. NAO-1: The character of the lunar soil and the simulated lunar soil CUG-1A[C]// The Seventh Annual Seminar of Space Science Society of China. Dalian, 2009. (in Chinese))
    [16]
    王 凯. 钻进取样模拟月壤的主要物理力学性质试验研究[D]. 北京: 清华大学, 2012. (WANG Kai. Experimental study on physical and mechanical properties of lunar soil simulant for drilling[D]. Beijing: Tsinghua University, 2012. (in Chinese))
    [17]
    李志刚. 人工装置与模拟月壤相互作用的土工离心模型试验研究[D]. 北京: 清华大学, 2008. (LI Zhi-gang. Research on geotechnical centrifuge model tests on interaction between artificial device and simulated lunar soil[D]. Beijing: Tsinghua University, 2008. (in Chinese))
    [18]
    李建桥, 邹 猛, 贾 阳, 等. 用于月面车辆力学试验的模拟月壤研究[J]. 岩土力学, 2008,29(6): 1557-1561. (LI Jian-qiao, ZOU Meng, GU Yang, et al. Lunar soil simulant for vehicle-terramechanics research in labtory[J]. Rock and Soil Mechanics, 2008, 29(6): 1557-1561. (in Chinese)
    [19]
    蒋明镜, 李立青. TJ-1 模拟月壤的研制[J]. 岩土工程学报, 2011, 33(2): 209-214. (JIANG Ming-jing, LI Li-qing. Development of TJ-1 lunar soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 209-214. (in Chinese))
    [20]
    蒋明镜, 李立青, 刘 芳, 等. 含水率和颗粒级配对 TJ-1 模拟月壤力学性能影响的试验研究[J]. 岩土力学, 2011, 32(7): 1921-1925. (JIANG Ming-jing, LI Li-qing, LIU Fang, et al. Effects of moisture content and gradation on mechanicalproperties of TJ-1 lunar soil simulant[J]. Rock and Soil Mechanics, 2011, 32(7): 1921-1925. (in Chinese))
    [21]
    邹 猛, 李建桥, 何 玲, 等. 不同粒径分布模拟月壤承压特性试验研究[J]. 航空学报, 2012, 33(12): 2338-2346. (ZOU Meng, LI Jian-qiao, HE Ling, et al. Experimental study on the pressure-sinkage characteristic of the simulant regolith with different Particle size distribution[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2338-2346. (in Chinese))
    [22]
    邹 猛, 李建桥, 刘国敏, 等. 模拟月壤地面力学性质试验研究[J]. 岩土力学, 2011, 32(4): 1057-1061. (ZOU Meng, LI Jian-qiao, LIU Guo-min, et al. Experimental study of terra-Mechanics characters of simulant lunar soil[J]. Rock and Soil Mechanics, 2011, 32(4): 1057-1061. (in Chinese))
    [23]
    杨艳静, 向树红. 模拟月壤力学性质的试验和仿真研究[J]. 航天器环境工程, 2009, 26(增刊): 1-4. (YANG Yan-jing, XIANG Shu-hong. The mechanical properties of the test and simulation study on simulated lunar soil[J]. Spacecraft Environment Engineering, 2009, 26(S): 1-4. (in Chinese))
    [24]
    PONCE M, BELL J M. Shear strength of sand at extremely low pressures[J]. Journal of Soil mechanics and Foundations, 1971, 97(SM4): 625-638.
    [25]
    STROUD M A. The behavior of sand at low stress level in the simple direct-sheer apparatus[D]. Cambridge: Cambridge University, 1971.
    [26]
    FUKUSHINA S, TATSUOKA F. Strength and deformation characteristics of saturated sand at extremely low pressures[J]. Soils and Foundations, 1984, 24(4): 31-48.
    [27]
    STURE S, COSTES N, BATISTE S, et al. Mechanics of granular materials at low effective stresses[J]. J Aerosp Eng, 1998, 11(3): 67-72.
    [28]
    ALSHIBLI K A, STURE S, COSTES N C. Constitutive and stability behavior of soils in microgravity environment[C]// AIP Conf Proc Albuquerque. 2000.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return