• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Shuai-shuai, GAO BO, SUI Chuan-yi, WEN Yu-min. Mechanism of shock absorption layer and shaking table tests on shaking absorption technology of tunnel across fault[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1086-1092. DOI: 10.11779/CJGE201506015
Citation: WANG Shuai-shuai, GAO BO, SUI Chuan-yi, WEN Yu-min. Mechanism of shock absorption layer and shaking table tests on shaking absorption technology of tunnel across fault[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1086-1092. DOI: 10.11779/CJGE201506015

Mechanism of shock absorption layer and shaking table tests on shaking absorption technology of tunnel across fault

More Information
  • Received Date: January 02, 2014
  • Published Date: June 18, 2015
  • Based on the wave function expansion method, the dynamic response analysis of a deep buried cylindrical composite-lining cavity with a new buffer layer mode, namely "rock- buffer layer-primary support-secondary lining" mode, in an elastic space subjected to incident plane SV waves is made. The factors affecting the dynamic stress concentration of the lining structure, elastic modulus and thickness of the buffer layer are discussed. By conducting the large-scale shaking table model tests on the tunnel across the fault zone, some engineering significant conclusions are drawn by analyzing the dynamic properties and fracture patterns of the tunnel across the fault and that with buffer layer. With the lower elastic modulus and smaller thickness of the buffer layer, the dynamic stress concentration of the secondary lining decreases, but the best ratio of the elastic modulus of the buffer layer to that of the surrounding rock is between 1/10~1/20, and the optimal thickness of the buffer layer is no larger than 0.2 m. With the buffer layer, the lining peak acceleration and the dynamic strain amplitudes of the lining decrease. Most of the complex and wider cracks of the lining concentrate on the spandrel and arch foot when the tunnel crosses the fault zone, however, the number of lining cracks decreases with shock sorption joint layers, which shows that the force status of the lining is significantly improved. Wider cracks occur on the ground surface along the fault, and many smaller cracks intersect the fault, which shows that the tunnels and surrounding rock are damaged by shearing force when it crosses the fault, and the number of the crack on the top surface is reduced with the buffer layer. The research conclusions may provide references for the shock and sorption design of tunnels across fault, and they are of important practical engineering significance.
  • [1]
    PAO Y H, MAO C C. The diffraction of elastic waves and dynamic stress concentrations[M]. New York: Crane, Russak & Company Inc, 1972.
    [2]
    DAVIS C A, LEE V W, BARDET J. Transverse response of underground cavities and pipes to incident SV waves[J]. Earthquake Engineering and Structural Dynamics,2001, 30(3): 383–410.
    [3]
    LEE V W, T RIFUNAC M D. Response of tunnels to incident SH waves[J]. Journal of Engineering Mechanics, ASCE, 1979, 105: 643–659.
    [4]
    LE E V W, KARL J. Diffraction of SV waves by underground, circular, cylindrical cavities[J]. Soil Dynamics and Earthquake Engineering, 1992, 11: 445–456.
    [5]
    梁建文, 纪晓东. 地下衬砌洞室对Rayleigh 波的放大作用 [J]. 地震工程与工程振动, 2006, 26(4): 24–31. (LIANG Jian-wen, JI Xiao-dong. Amplification of Rayleigh waves due to underground lined cavities[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4): 24–31. (in Chinese))
    [6]
    纪晓东, 梁建文, 杨建江. 地下圆形衬砌洞室在平面P 波 和SV 波入射下动应力集中问题的级数解[J]. 天津大学学 报, 2006, 39(5): 511–517. (JI Xiao-dong, LIANG Jian-wen, YANG Jian-jiang. On dynamic stress concentration of an underground cylindrical lined cavity subjected to incident plane P and SV waves[J]. Journal of Tianjin University, 2006, 39(5): 511–517. (in Chinese))
    [7]
    李 刚, 钟启凯, 尚守平. 平面SH波入射下深埋圆形组合 衬砌洞室的动力反应分析[J]. 湖南大学学报 (自然科学 版), 2010, 37(1): 17–22. (LI Gang, ZHONG Qi-kai, SHANG Shou-ping. Dynamic response analysis of deep buried cylindrical composite-lining cavity subjected to incident plane SH waves[J]. Journal of Hunan University (Natural Sciences), 2010, 37(1): 17–22. (in Chinese))
    [8]
    钟启凯. 地下圆形组合衬砌洞室在地震波下的动力反应分 析[D]. 长沙: 湖南大学, 2009. (ZHONG Qi-kai. Dynamic response analysis of underground cylindrical composite-lining cavern subjected to seismic waves[D]. Changsha: Hunan University, 2009. (in Chinese))
    [9]
    王峥峥, 高 波, 索然绪. 双洞隧道洞口段抗减震振动台 试验[J]. 中国公路学报, 2009, 22(2): 71–76. (WANG Zheng-zheng, GAO Bo, SUO Ran-xu. Shaking table tests on entrance anti-seism of double track tunnels[J]. China Journal of Highway and Transport, 2009, 22(2): 71–76. (in Chinese))
    [10]
    王峥峥. 跨断层隧道结构非线性地震损伤反应分析[D]. 成都: 西南交通大学, 2007. (WANG Zheng-zheng. Nonlinear seismic damage response of tunnel structure across fault[D]. Chengdu: Southwest Jiaotong University, 2007. (in Chinese))
    [11]
    信春雷, 高 波, 周佳媚, 等. 跨断层隧道抗减震措施性 能振动台试验研究[J]. 岩土工程学报, 2014(8): 1414– 1422. (XIN Chun-lei, GAO Bo, ZHOU Jia-mei, et al. Shaking table tests on performances of anti-seismic and damping measures for fault-crossing tunnel structures[J]. Chinese Journal of Geotechnical Engineering, 2014(8): 1414-1422. (in Chinese))
    [12]
    高 波, 王峥峥, 袁 松, 等. 汶川地震公路隧道震害启 示[J]. 西南交通大学学报, 2009, 44(3): 336–374. (GAO Bo, WANG Zheng-zheng, YUAN Song, et al. Lessons learnt from damage of highway tunnels in Wenchuan earthquake[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 336– 374. (in Chinese))
  • Cited by

    Periodical cited type(25)

    1. 蒙贤忠,夏宇磬,周传波,冯庆高,蒋楠,杨玉民. 土–岩地层水平孔爆破诱发振动传播特征及预测. 岩石力学与工程学报. 2025(03): 737-751 .
    2. 乔雄,刘文高,倪伟淋,张伟,杨鑫,黄锦聪,刘锦龙. 基于爆破荷载等效施加方法的振动波形预测与古建筑安全评估. 地震工程学报. 2024(01): 16-25 .
    3. 王小飞,胡少斌,王恩元,黄俊,颜正勇. 干冰粉热冲击破岩基坑围护结构振动安全研究. 中国公路学报. 2024(03): 371-381 .
    4. 伍福寿,张学民,韩淼,陈进,胡涛,周贤舜,王树英,朱凯. 近接既有隧道爆破激发地震波成分构成及特性研究. 中南大学学报(自然科学版). 2024(04): 1406-1417 .
    5. 孙丰森,王海亮,张勇,张雨晨. 埋地输油管道对胶州湾第二海底隧道爆破施工的动力响应. 山东科技大学学报(自然科学版). 2024(03): 75-84 .
    6. 李坚,赵岩,周文磊,王海龙. 掏槽爆破作用下振动波形预测及影响分区确定. 工程爆破. 2024(04): 122-130 .
    7. 何理,殷琳,钟冬望,张鑫玥,赵永明,熊海涛,陈莎莎,NJAMBA Bruno. 爆破振动强度、波形与频谱研究综述:预测及主动控制. 爆破. 2024(03): 189-204+262 .
    8. 望远福,李云赫,赵岩,范杰林. 隧道爆破振动中掏槽段的波形预测方法. 中国测试. 2024(10): 150-156 .
    9. 骆峻伟,胡少斌,黄俊,王小飞. 隧道干冰粉膨胀破岩绿色施工技术研究. 现代交通技术. 2024(06): 46-49 .
    10. 周贤舜,张学民,武朝光,胡涛,陈鑫磊,段亚. 基于低碳减排的隧道水封爆破优化效果研究. 铁道科学与工程学报. 2023(03): 996-1007 .
    11. 张雨晨,王海亮,石晨晨,丁新宇,赵军. 隧道爆破下邻近管道动力响应的数值模拟. 工程爆破. 2023(03): 95-105 .
    12. 魏海霞,祝杰,杨小林,褚怀保. 高压气体爆破作用下层状岩体的地表振动效应预测方法. 振动与冲击. 2023(20): 1-11 .
    13. 赵珂,蒋楠,周传波,姚颖康,朱斌. 爆破地震荷载作用下埋地燃气管道动力响应尺寸效应研究. 振动与冲击. 2022(02): 64-73 .
    14. 刘桂勇,刘小鸣,陈士海. 延时时间对地表振动叠加效应的影响. 工程爆破. 2022(01): 63-70 .
    15. 刘潇,欧运平,曹鲁鹏,彭伟哲. 羊头山隧道开挖围岩稳定性监测分析. 甘肃科学学报. 2022(04): 137-140+152 .
    16. 李新平,张雪屏,刘飞香,郑博闻,罗忆. 群孔齐发爆破岩体振动频谱特性研究. 爆破. 2021(01): 14-20+35 .
    17. 朱斌,蒋楠,周传波,贾永胜,罗学东,吴廷尧. 粉质黏土层直埋铸铁管道爆破地震效应. 浙江大学学报(工学版). 2021(03): 500-510 .
    18. 石伟民,何方,陈士海,揭海荣,李海波. 新建隧道下穿既有铁路结构爆破振动影响分区及减震优化. 华侨大学学报(自然科学版). 2021(06): 764-771 .
    19. 刘小鸣,陈士海. 群孔微差爆破的地表振动波形预测及其效应分析. 岩土工程学报. 2020(03): 551-560 . 本站查看
    20. 刘航雨,陈寿根. 深埋软岩紧急救援站爆破安全距离的研究. 四川建筑. 2020(02): 145-146+149 .
    21. 陈元利,付玉华,郭丽艳,王庆,张康康. “小构造”复杂岩石条件下掏槽爆破的试验研究. 矿业研究与开发. 2020(06): 23-27 .
    22. 关祥宏. 矿山隧道掘进围岩稳定性动态监测研究. 矿冶工程. 2020(03): 34-38 .
    23. 陈士海,刘小鸣,张子华,林从谋. 隧道掘进爆破诱发隧道后方开挖段地表振动效应分析. 岩土工程学报. 2020(10): 1800-1806 . 本站查看
    24. 陈经鹏,陈士海. 隧道掘进爆破时掌子面前方开挖段的地表振速预测. 华侨大学学报(自然科学版). 2020(06): 718-726 .
    25. Chen Li,Shufeng Liang,Yongchao Wang,Long Li,Dianshu Liu. Attenuation Parameters of Blasting Vibration by Fuzzy Nonlinear Regression Analysis. Journal of Beijing Institute of Technology. 2020(04): 520-525 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return