• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Tan-tan, JING Hong-wen, SU Hai-jian, YIN Qian, DU Ming-rui. Mechanical behavior of sandstone containing double circular cavities under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1047-1056. DOI: 10.11779/CJGE201506011
Citation: ZHU Tan-tan, JING Hong-wen, SU Hai-jian, YIN Qian, DU Ming-rui. Mechanical behavior of sandstone containing double circular cavities under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1047-1056. DOI: 10.11779/CJGE201506011

Mechanical behavior of sandstone containing double circular cavities under uniaxial compression

More Information
  • Received Date: August 15, 2014
  • Published Date: June 18, 2015
  • Hole is one of the basic forms of micro defects in rock, and its fracture evolution mechanisms have become an important research subject in the field of rock mechanics. The uniaxial compression tests on tabular sandstone samples with pre-existing double circular cavities are conducted in order to investigate the effect of circle center distance 2b and angle α on strength, deformation and fracture evolution process of sandstone. The results show that both the peak strength and the elastic modulus of sandstone increase first and then decrease with the increase of the circle center distance 2b, and the peak strength and the elastic modulus reach their maximum values respectively when the circle center distance is 22 and 27 mm. With the increase of angle α, both the peak strength and the elastic modulus first decrease and then increase, and both of them reach the minimum values when the angle is 60°. The initial damage forms of the double circular cavities samples are all the collapsing destruction from the inner wall of the holes, and both the circle center distance and the angle have great influences on the stress levels of crack initiation, lap ways of holes and fracture evolution process.
  • [1]
    YANG S Q, JING H W, XU T. Mechanical behavior and failure analysis of brittle sandstone specimens containing combined flawsun[J]. Journal of Central South University, 2014, 21: 2059–2073.
    [2]
    杨圣奇. 断续三裂隙砂岩强度破坏和裂纹扩展特征研究[J]. 岩土力学, 2013, 34(1): 31–39. (YANG Sheng-qi. Study of strength failure and crack coalescence behavior of sandstone containing three pre-existing fissures[J]. Rock and Soil Mechanics, 2013, 34(1): 31–39. (in Chinese))
    [3]
    杨永明, 鞠 杨, 毛灵涛. 三轴应力下致密砂岩裂纹展布 规律及表征方法[J]. 岩土工程学报, 2014, 36(5): 864–872. (YANG Yong-ming, JU Yang, MAO Ling-tao. Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 864–872. (in Chinese))
    [4]
    钟志彬, 邓荣贵, 李 佳, 等. 天然裂隙性流纹岩三轴力学 特性试验研究[J]. 岩石力学与工程学报, 2014, 33(6): 1233-1240. (ZONG Zhi-bin, DENG Rong-gui, LI Jia, et al. Experimental study of triaxial mechanical properties of naturally fissured rhyolite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1233–1240. (in Chinese))
    [5]
    李建林, 王乐华, 孙旭曙. 节理岩体卸荷各向异性力学特 性试验研究[J]. 岩石力学与工程学报, 2014, 33(5): 892– 900. (LI Jian-lin, WANG Le-hua, SUN Xu-shu. Experimental study on anisotropic mechanical characteristics of jointed rock masses under unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 892–900. (in Chinese))
    [6]
    YANG S Q, HUANG Y H, JING H W, et al. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression[J]. Engineering Geology, 2014, 178: 28–48.
    [7]
    YANG S Q, LIU X R, JING H W. Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression[J], International Journal of Rock Mechanics and Mining Sciences, 2014, 63: 82–92.
    [8]
    赵延林, 万 文, 王卫军, 等. 类岩石材料有序多裂纹体单 轴压缩破断试验与翼形断裂数值模拟[J]. 岩土工程学报, 2013, 35(11): 2097–2109. (ZHAO Yan-lin, WAN Wen, WANG Wei-jun, et al. Fracture experiment of ordered multi-crack body in rock-like material under uniaxial compression and numerical simulation of wing cracks[J]. Chinese Journal of Geotechnical Engineering, 2013 35(11): 2097–2109. (in Chinese))
    [9]
    赵延林, 曹 平, 万 文, 等. 岩石裂纹亚临界扩展实验与 压剪流变断裂模型[J]. 中南大学学报(自然科学版), 2014, 45(1): 276–286. (ZHAO Yan-lin, CAO Ping, WAN Wen, et al. Rock cracks subcritical propagation test and compression-shear rheological fracture model[J]. Journal of Central South University (Science and Technology), 2014, 45(1): 276–286. (in Chinese))
    [10]
    谢林茂, 朱万成, 王述红, 等. 含孔洞岩石试样三维破裂 过程的并行计算分析[J]. 岩土工程学报, 2011, 33(9): 1447-1455. (XIE Lin-mao, ZHU WAN-cheng, WANG Shu-hong, et al. Three-dimensional parallel computing on failure process of rock specimen with a pre-existing circular opening[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1447–1455. (in Chinese))
    [11]
    刘招伟, 李元海. 含孔洞岩石单轴压缩下变形破裂规律的 实验研究[J]. 工程力学, 2010, 27(8): 133–139. (LIU Zhao-wei, LI Yuan-hai. Experimental investigation on the deformation and crack behavior of rock specimen with a hole undergoing uniaxial compressive load[J]. Engineering Mechanics, 2010, 27(8): 133–139. (in Chinese))
    [12]
    ZHAO X D, ZHANG H X, ZHU W C. Fracture evolution around pre-existing cylindrical cavities in brittle rocks under uniaxial compression[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3): 806–815.
    [13]
    WANG S Y, SLOAN S W, TANG C A. Three-dimensional numerical investigations of the failure mechanism of a rock disc with a central or eccentric hole[J]. Rock Mechanics & Rock Engineering, 2014, 47(6): 2117–2137.
    [14]
    周 航, 孔纲强, 刘汉龙. 饱和土体中椭圆孔扩张弹塑性 解[J]. 岩土工程学报, 2014, 36(5): 983–988. (ZHOU Hang, KONG Gang-qiang, LIU Han-long. Elasto-plastic solution for elliptical cavity expansion in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 983–988. (in Chinese))
    [15]
    李地元, 李夕兵, 李春林, 等. 单轴压缩下含预制孔洞板 状花岗岩试样力学响应的试验和数值研究[J]. 岩石力学与 工程学报, 2011, 30(6): 1198–1206. (LI Di-yuan, LI Xi-bing, LI Chun-lin, et al. Experimental and numerical studies of mechanical response of plate-shape granite samples containing prefabricated holes under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1198–1206. (in Chinese))
    [16]
    杨圣奇, 黄彦华. 双孔洞裂隙砂岩裂纹扩展特征试验与颗 粒流模拟[J]. 应用基础与工程科学学报, 2014, 22(3): 584-597. (YANG Sheng-qi, HUANG Yan-hua. Experiment and particle flow simulationon crack coalescence behavior of sandstone specimens containing double holes and a single fissure[J]. Journal of Basic Science and Engineering, 2014, 22(3): 584–597. (in Chinese))
    [17]
    王 宇, 李 晓, 武艳芳, 等. 脆性岩石起裂应力水平与 脆性指标关系探讨[J]. 岩石力学与工程学报, 2014, 33(2): 264–275. (WANG Yu, LI Xiao, WU Yan-fang, et al. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 264–275. (in Chinese))
    [18]
    YANG S Q. Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure[J]. Engineering Fracture Mechanics, 2011, 78(17): 3059–3081.
  • Related Articles

    [1]XU Yuan-heng, RAN Guang-bin, CHEN Hong-yong. Study and design of rotary arm of geotechnical centrifuge with high speed[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 62-65. DOI: 10.11779/CJGE2022S2014
    [2]LIN Feng. Optimization design of retaining system for deep foundation pits under complex environmental conditions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 39-45. DOI: 10.11779/CJGE2014S1006
    [3]JIANG Yan, YANG Guang-hua, QIAO You-liang, ZHONG Zhi-hui, ZHANG Yu-cheng. Optimal design of a large deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 335-341.
    [4]WANG Wei, SHEN Zhenzhong, LI Taofan. Safety early warning evaluation model for dams based on coupled method of genetic algorithm and adapting particle swarm optimization algorithm[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1242-1247.
    [5]LI Duanyou, GAN Xiaoqing, ZHOU Wu. Back analysis on mechanical parameters of dams based on uniform design and genetic neural network[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 125-130.
    [6]PENG Mingxiang. Optimum design method of soil nailing structure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1218-1223.
    [7]HE Keqiang, YANG Jibao, WANG Shengli. Application of genetic algorithms in the optimizaion of soil-nail bracing[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 567-571.
    [8]YANG Wanbin, XUE Xicheng. The optimized calculation method for spacing and cross section of underground tunnels[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 61-63.
    [9]Yin Yueping, Kang Hongda, Zhang Ying. Stability analysis and optimal anchoring design on Lianziya dangerous rockmass[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 599-603.
    [10]Xue Xicheng, Yang Wanbin. A calculation method for optimizing the shape of section of a tunnel[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 9-12.

Catalog

    Article views (374) PDF downloads (291) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return