• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TANG Zhi-cheng, LIU Quan-sheng. Closure deformation model for rock joints considering asperity interaction[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 853-859. DOI: 10.11779/CJGE201505011
Citation: TANG Zhi-cheng, LIU Quan-sheng. Closure deformation model for rock joints considering asperity interaction[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 853-859. DOI: 10.11779/CJGE201505011

Closure deformation model for rock joints considering asperity interaction

More Information
  • Received Date: August 23, 2014
  • Published Date: May 19, 2015
  • The load-closure behavior of rough surfaces remains to be an open question of interest with applications in many practical rock engineering problems. According to the elastic theory, a theoretical model is further developed for obtaining the stress-closure behavior of rock joints. The present model can account for the deformed asperity interaction expressed by a uniform pressure. The composite topography is used to capture the features of rock joints under different contacts and the corresponding topography parameters are the input parameters for validity of the proposed model. The new model is also suitable for solving the closure behavior of rock joints with waviness component. Compared with those by the Xia model, which ignores the asperity interaction, the calculated curves by the proposed model fit the experimental results well.
  • [1]
    BANDIS S C, LUMSDEN A C, BARTON N. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(6): 249-268.
    [2]
    TANG Z C, LIU Q S, XIA C C, et al. Mechanical model for predicting closure behavior of rock joints under normal stress[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 1-12.
    [3]
    GOODMAN R E. Methods of geological engineering in discontinuous rocks[M]. New York: West, 1976.
    [4]
    BARTON N, BANDIS S C, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3): 121-140.
    [5]
    MALAMA B, KULATILAKE P H S W. Models for normal fracture deformation under compressive loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(6): 893-901.
    [6]
    SWAN G. Determination of stiffness and other joint properties from roughness measurements[J]. Rock Mechanics and Rock Engineering, 1983, 16(1): 19-38.
    [7]
    俞缙, 赵晓豹, 赵维炳, 等. 改进的岩石节理弹性非线性法向变形本构模型研究[J]. 岩土工程学报, 2008, 30(9): 1316-1321. (YU Jin, ZHAO Xiao-bao, ZHAO Wei-bing, et al. Improved nonlinear elastic constitutive model for nornal deformation of rock fractares[J]. Chinese Journal of Geotechnial Engineering, 2008, 30(9): 1316-1321. (in Chinese))
    [8]
    唐志成. 考虑扰动影响的节理与柱状节理岩体的力学性质[D]. 上海: 同济大学, 2013. (TANG Z C. Mechanical behaviors of rock joint under different contact state and columnar jointed rock mass[D]. Shanghai: Tongji University, 2013. (in Chinese))
    [9]
    COOK N G W. Natural joints in rock: Mechanical, hydraulic and seismic behaviour and properties under normal stress[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3): 198-223.
    [10]
    HOPKINS D L. The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations, and faults[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1/2): 175-202.
    [11]
    LEE S D, HARRISON J P. Empirical parameters for non-linear fracture stiffness from numerical experiments of fracture closure[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 721-727.
    [12]
    MARACHE A, RISS J, GENTIER S. Experimental and modelled mechanical behaviour of a rock fracture under normal stress[J]. Rock Mechanics and Rock Engineering, 2008, 41(6): 869-892.
    [13]
    GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966, 295: 300-319.
    [14]
    GREENWOOD J A, TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625-633.
    [15]
    YAMADA K, TAKEDA N, KAGAMI J, et al. Mechanisms of elastic contact and friction between rough surfaces[J]. Wear, 1978, 48(1): 15-34.
    [16]
    BROWN S R, SCHOLZ C H. Closure of random elastic surfaces in contact[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B7): 5531-5545.
    [17]
    BROWN S R, SCHOLZ C H. closure of rock joints[J]. Journal of Geophysical Research (Solid Earth), 1986, 91(B5): 4939-4948.
    [18]
    MATSUKI K, WANG E Q, SAKAGUCHI K, et al. Time-dependent closure of a fracture with rough surfaces under constant normal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 607-619.
    [19]
    唐志成, 夏才初, 宋英龙, 等. 考虑基体变形的节理闭合变形理论模型[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3068-3074. (TANG Zhi-cheng, XIA Cai-chu, SONG Ying-long, et al. Joint closure deformation model based on asperity-substrate deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3068-3074. (in Chinese))
    [20]
    ISRM. Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(6): 319-368.
    [21]
    XIA C C, YUE Z Q, THAM L G, et al. Quantifying topography and closure deformation of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(2): 197-220.
    [22]
    TIMOSHENKO S, GOODIER J N. Theory of elasticity[M]. New York: McGraw-Hill, 1970.
  • Cited by

    Periodical cited type(24)

    1. 陈琼,崔德山,张扬景皓,朱俊峰. 一种新型环剪仪的研制及其应用. 地质科技通报. 2025(01): 205-215 .
    2. 张卫雄,杨校辉,丁保艳,朱文杰,任永忠. 甘肃舟曲江顶崖滑坡堆积层剪切特性与强度参数分析. 中国地质灾害与防治学报. 2025(01): 65-72 .
    3. Yang Xue,Fasheng Miao,Yiping Wu,Linwei Li,Daniel Dias,Yang Tang. Probabilistic Assessment of Constitutive Model Parameters:Insight from a Statistical Damage Constitutive Model and a Simple Critical State Hypoplastic Model. Journal of Earth Science. 2025(02): 685-699 .
    4. 张兆雷. 滑带土力学性能及抗滑桩支护斜坡稳定分析. 黑龙江交通科技. 2025(04): 6-10 .
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 鄢俊彪,孔令伟,李甜果,周振华. 膨胀土残余强度的变速率效应及工程启示. 岩土工程学报. 2024(07): 1445-1452 . 本站查看
    7. 方永柱. 库岸边坡滑坡带土体特性试验研究. 陕西水利. 2024(07): 196-198 .
    8. 袁伟. 基于Midas对沿河滑坡的分析研究. 中国水运. 2024(08): 139-141 .
    9. 袁伟. 基于Midas对沿河滑坡的分析研究. 中国水运. 2024(15): 139-141 .
    10. 王家鑫,夏元友,王智德. 考虑滑面应变软化效应的边坡震后位移计算方法. 计算力学学报. 2024(06): 1029-1036 .
    11. 杜毅,晏鄂川,蔡静森,高旭,柳万里. 折线型复合式滑坡渐进破坏稳定性状态的力学判别. 岩土工程学报. 2023(06): 1151-1161 . 本站查看
    12. 苗发盛,赵帆程,吴益平,孟佳佳. 基于渗透-环剪试验的三峡库区童家坪滑坡滑带土强度特性研究. 岩土工程学报. 2023(07): 1480-1489 . 本站查看
    13. 黄淙葆,代张音,高威挺,罗庆丽. 贵州公路旁边坡滑带土抗剪强度特性研究. 地质与资源. 2023(03): 366-374 .
    14. 吴爽爽,胡新丽,孙少锐,魏继红. 间歇式滑坡变形力学机制与单体预警案例研究. 岩土力学. 2023(S1): 593-602 .
    15. 夏婷,代张音,杨银凯,赵昆. 含水率对滑带土抗剪强度的影响. 矿业工程研究. 2023(04): 60-66 .
    16. 赵帆程,苗发盛,吴益平,薛阳,孟佳佳. 不同环剪条件下三峡库区童家坪滑坡滑带土强度特性. 地质科技通报. 2022(02): 315-324 .
    17. 周洪福,张卓婷,韦玉婷. 基于滑体自重效应的滑带土强度参数取值方法. 岩石力学与工程学报. 2022(05): 1045-1053 .
    18. 唐雅婷,谭杰,李长冬,李炳辰,周文娟. 基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探. 地质科技通报. 2022(06): 137-148 .
    19. 李政洋,袁伟,蒙焕伟. 高洞滑坡基本特征及形成机制分析. 中国水运(下半月). 2022(12): 109-111 .
    20. 付传林. 水库滑坡变形特征的数值分析. 水利科技与经济. 2022(12): 116-120 .
    21. 李政洋,袁伟,蒙焕伟. 高洞滑坡基本特征及形成机制分析. 中国水运. 2022(24): 109-111 .
    22. 任三绍,张永双,徐能雄,吴瑞安. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制. 岩土工程学报. 2021(08): 1473-1482 . 本站查看
    23. 张晓奇,胡新丽,刘忠绪,刘畅,吴爽爽. 呷爬滑坡滑带土蠕变特性及其稳定性. 地质科技通报. 2020(06): 145-153 .
    24. 张耀文,吴迪. 黏性土的残余强度及试验方法研究. 工程技术研究. 2019(24): 147-148+226 .

    Other cited types(4)

Catalog

    Article views (366) PDF downloads (380) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return