• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Hao, LUO Qiang, ZHANG Liang, JIANG Liang-wei, ZHANG Jia-guo. Centrifugal model tests on shoulder balance weight retaining wall with various motion modes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 675-682. DOI: 10.11779/CJGE201504013
Citation: LI Hao, LUO Qiang, ZHANG Liang, JIANG Liang-wei, ZHANG Jia-guo. Centrifugal model tests on shoulder balance weight retaining wall with various motion modes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 675-682. DOI: 10.11779/CJGE201504013

Centrifugal model tests on shoulder balance weight retaining wall with various motion modes

More Information
  • Received Date: September 03, 2014
  • Published Date: May 05, 2015
  • Using the new shoulder balance weight retaining wall of an old embankment widening project of a mountainous highway as the prototype, four groups of geotechnical centrifugal model tests are designed based on the wall motions under translation (T), rotating around base (RB), rotation around top (RT) and T+RB modes, the impact of wall motion modes on earth pressure and deformation of the filling is discussed, and the process of soils at various depths entering in to the active earth pressure is analyzed. The results show that: (1) The wall motion modes almost have no influence on the values and distribution of earth pressure on the upper wall, but when the ratio of displacement to height of retaining wall is less than 0.3%~0.5%, the shallow layer fills behind the upper wall have soil arching effect which is caused by wall-soil friction, and the coefficient of horizontal earth pressure increases; (2) The equilibrator has a shadowing effect on the down wall earth pressure, and the influence area is about 1/3 height of the down wall below the equilibrator. The results reduce the position of the acting point of earth pressure resultant force; (3) The motion modes have obvious impact on the fill settlement. When the maximum wall displacements are the same, the fill settlement of the T mode is significantly larger than that of the RB and RT modes. Under the RT mode, although it has the same displacement area as the RT mode, the equilibrator deflects downward. The fill settlement is promoted, leading to that the fill settlement of the RT mode is larger than that of RB mode, and the second fracture surface occurs easier on the upper wall.
  • [1]
    COULOMB A C. Essai sur une application des régles de Maximis & Minimis à quelques Problèmes de Statique, relatifs à l'Architecture[J]. Présentés à l'Academie des Sciences par divers Savans, 1776, 7: 343-382. (COULOMB A C. Test on an application of the rules of maximis & minimis some static problems related to architecture[J]. Presented to the Academy of Sciences by Various Savants, 1776, 7: 343-382. (in French))
    [2]
    RANKINE W J M. On the stability of loose earth[J]. Philosophical Transactions of the Royal Society of London, 1857: 9-27.
    [3]
    刘国楠, 胡荣华, 潘效鸿, 等. 衡重式桩板挡墙上墙土压力模型试验研究[J]. 岩土力学, 2011, 32(增刊2): 94-99. (LIU Guo-nan, HU Rong-hua, PAN Xiao-hong, et al. Model tests on earth pressure of upper wall of sheet pile wall with relieving platform[J]. Rock and Soil Mechanics, 2011, 32(S2): 94-99. (in Chinese))
    [4]
    刘永春. 衡重式桩板挡墙的模型试验研究[D]. 北京: 中国铁道科学研究院, 2010. (LIU Yong-chun. The model test research on pile-supported relieving retaining wall[D]. Beijing: China Academy of Railway Sciences, 2010. (in Chinese))
    [5]
    罗强, 蔡英, 邵启豪. 成都黏土重力式挡土墙的工程试验[J]. 西南交通大学学报, 1995, 30(3): 270-274. (LUO Qing, CAI Ying, SHAO Qi-hao. Experimental study on gravity retaining wall filled with chengdu clay[J]. Journal of Southwest Jiaotong University, 1995, 30(3): 270-274. (in Chinese))
    [6]
    TERZAGHI K. Large retaining-wall test I. pressure of dry sand[J]. Engineering News-Record, 1900, 112(5): 136-140.
    [7]
    FANG Y S, ISHIBASH I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, ASCE, 1986, 112(3): 317-333.
    [8]
    FANG Y S, CHENG F P, CHEN R T. Earth pressures under general wall movements[J]. Journal of Geotechnical Engineering, ASCE, 1993, 24(2): 113-131.
    [9]
    周应英, 任姜龙. 刚性挡土墙主动土压力的试验研[J]. 岩土工程学报, 1990, 12(2): 19-26. (ZHOU Ying-ying, REN Jiang-long. An experimental study on active earth pressure behind rigid retaining wall[J]. Chinese Journal Geotechnical Engineering, 1990, 12(2): 19-26. (in Chinese))
    [10]
    KOBAKHIDZE A F. Form of the diagram of backfill pressure on a retaining wall[J]. Soil Mechanics and Foundation Engineering, 1977, 14(1): 68-73.
    [11]
    BANG S. Active earth pressure behind retaining walls[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(3): 407-412.
    [12]
    HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(3): 302-318.
    [13]
    TSAGARELI Z V. Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface[J]. Soil Mechanics and Foundation Engineering, 1965, 2(4): 197-200.
    [14]
    KHOSRAVI M H, PIPATPONGSA T, TAKEMURA J. Experimental analysis of earth pressure against rigid retaining walls under translation mode[J]. Géotechnique, 2013, 63(12): 1020-1028.
    [15]
    徐日庆, 龚慈, 魏纲. 考虑平动位移效应的刚性挡土墙土压力理论[J]. 浙江大学学报(工学版), 2005, 39(1): 119-122. (XU Ri-qing, GONG Ci, WEI Gang. Theory of earth pressure against rigid retaining walls considering translational movement effect[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(1): 119-122. (in Chinese))
    [16]
    应宏伟, 蒋波, 谢康和. 考虑土拱效应的挡土墙主动土压力分布[J]. 岩土工程学报, 2007, 29(5): 717-722. (YING Hong-wei, JIANG Bo, XIE Kang-he. Distribution of active pressure against retaining walls considering arching effects[J]. Chinese Journal Geotechnical Engineering, 2007, 29(5): 717-722. (in Chinese))
    [17]
    王元战, 李新国, 陈楠楠. 挡土墙主动土压力分布与侧压力系数[J]. 岩土力学, 2005, 26(7): 1019-1022. (WANG Yuan-zhan, LI Xin-guo, CHEN Nan-nan. Active earth pressure on a retaining wall and lateral coefficient of earth pressure[J]. Rock and Soil Mechanics, 2005, 26(7): 1019-1022. (in Chinese))
    [18]
    王元战, 李蔚, 黄长虹. 墙体绕基础转动情况下挡土墙主动土压力分布[J]. 岩土工程学报, 2003, 25(2): 208-211. (WANG Yuan-zhan, LI Wei, HUANG Chang-hong. Distribution of active earth pressure with wall movement of rotation about base[J]. Chinese Journal Geotechnical Engineering, 2003, 25(2): 208-211. (in Chinese))
    [19]
    TERAZGHI K. Theoretical soil mechanics[M]. New York: J Wiley and Sons, Inc, 1943.
    [20]
    陆阳, 廖敬梅, 廖军. 高填方路基衡重式挡墙的变形及稳定的现场监测[J]. 中国公路工程, 2006, 31(4): 9-13. (LU Yang, LIAO Jing-mei, LIAO Jun. Field monitoring of a gravity balanced retaining wall[J]. China Railway Science, 2006, 31(4): 9-13. (in Chinese))
    [21]
    徐光明, 章为民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-86. (XU Guang-min, ZHANG Wei-min. Study of the grain size effect and boundary effect in centrifugal model tests[J]. Chinese Journal Geotechnical Engineering, 1996, 18(3): 80-86. (in Chinese))
    [22]
    杨俊杰, 柳飞, 丰泽康男, 等. 砂土地基承载力离心模型试验中的粒径效应研究[J]. 岩土工程学报, 2007, 29(4): 477-483. (YANG Jun-jie, LIU Fei, TOYOSAWAY, et al. Particle size effects on bearing capacity of sand ground in centrifugal tests[J]. Chinese Journal Geotechnical Engineering, 2007, 29(4): 477-483. (in Chinese))
    [23]
    FUGLSANG L D, OVESEN N K. The application of the theory of modelling to centrifuge studies[J]. Centrifuge in Soil Mechanics, 1988: 119-138.
    [24]
    杜延龄. 土石坝离心模型试验研究[J]. 水利水电技术, 1997, 28(6): 54-58. (DU Yan-ling. Study on the centrifugal model test for earth-rock dam[J]. Technology of Water Resources and Hydropower, 1997, 28(6): 54-58. (in Chinese))
    [25]
    周镜, 李惠康, 郑明成. 衡重式挡墙的模型试验及其土压力计算[J]. 土木工程学报, 1963(10): 58-73. (ZHOU Jing, LI Hui-kang, ZHENG Ming-cheng. Model tests on balance weight retaining wall and calculation of earth pressure[J]. China Civil Engineering Journal, 1963(10): 58-73. (in Chinese))
    [26]
    李浩, 罗强, 张良, 等. 衡重式加筋土挡墙土工离心模型试验研究[J]. 岩土工程学报, 2014, 36(3): 458-465. (LI Hao, LUO Qiang, ZHANG Liang, et al. Centrifugal model tests on shoulder balance weight retaining wall with reinforced earth[J]. Chinese Journal Geotechnical Engineering, 2014, 36(3): 458-465. (in Chinese))
  • Related Articles

    [1]GUO Wanli, CAI Zhengyin, ZHU Jungao. Three state variables-related constitutive model for coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 234-242. DOI: 10.11779/CJGE20230372
    [2]LU Dechun, JIN Chenyi, LIANG Jingyu, LI Zehua, DU Xiuli. State-dependent non-orthogonal elastoplastic constitutive model for sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 221-231. DOI: 10.11779/CJGE20211457
    [3]CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, ZHANG Lei, GUAN Yun-fei, CAO Yong-yong. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, (6): 989-995. DOI: 10.11779/CJGE201906001
    [4]LUO Ting, LIU Lin, YAO Yang-ping. Description of critical state for sands considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 592-600. DOI: 10.11779/CJGE201704002
    [5]WEI Kuang-min, CHEN Sheng-shui, LI Guo-ying, FU Zhong-zhi. Constitutive model for coarse-grained dam materials considering state parameter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 654-661. DOI: 10.11779/CJGE201604009
    [6]ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
    [7]BIAN Xia, HONG Zhen-shun, CAI Zheng-yin, ZENG Ling-ling. Change of critical state lines of reconstituted clays with initial water contents[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 164-169.
    [8]YAO Yang-ping, YU Ya-ni. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832.
    [9]Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [10]ZHOU Cheng, SHEN Zhujiang, CHEN Shengshui, CHEN Tielin. A hypoplasticity disturbed state model for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 435-439.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return