• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Hai-hao, WEI Chang-fu, YAN Rong-tao, FU Xin-hui, MA Tian-tian. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. DOI: 10.11779/CJGE201503023
Citation: YU Hai-hao, WEI Chang-fu, YAN Rong-tao, FU Xin-hui, MA Tian-tian. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. DOI: 10.11779/CJGE201503023

Effects of pore solution concentrations on shear strength of clay

More Information
  • Received Date: July 10, 2014
  • Published Date: March 23, 2015
  • Pore solutions play an important role in the shear strength of soils. A series of shearing and microcosmic tests are performed on the samples saturated with NaCl solutions with different concentrations to investigate the effects of pore solution concentrations on the effective strength of clay. The experimental results show that the pore solution concentrations have strong effects on cohesion of samples. The cohesion decreases with the increase of pore solution concentrations. As the concentration approaches 0.1 mol/L, the cohesion decreases to below 0 kPa. The cohesion depends on the block effect of physical and chemical forces between particles on the interparticle sliding. The repulsion decreases with the increase of the pore solution concentration which makes the interparticle sliding more easily. Due to the development of real pore pressure in the samples, the cohesion decreases to below 0 kPa. The environmental scanning electron microscopy tests on the microstructures confirm that clays form flocculation in NaCl solution and form aggregation in water.
  • [1]
    孙重初. 酸液对红黏土物理力学性质的影响[J]. 岩土工程学报, 1989, 11(4): 89-93. (SUN Zhong-chu. The effect of acidizing fluid on the physico-mechanical properties of red clay[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(4): 89-93. (in Chinese))
    [2]
    NAGEL N. Ekofisk geomechanics monitoring[C]// Proceedings of the International Workshop on Geomechanics in Reservoir Simulation. Reuil-Malmaison, 2010.
    [3]
    王 洋, 汤连生. 水土作用模式对残积红黏土力学性质的影响分析[J]. 中山大学学报 (自然科学版), 2007, 46(1): 128-132. (WANG Yang, TANG Lian-sheng. Effects of water-soil interaction on mechanical strength of residual red clay[J]. Acta Scientiarum Naturalium Universitais Sunyatseni (Natural Science), 2007, 46(1): 128-132. (in Chinese))
    [4]
    SPAGNOLI G, RUBINOS D. Undrained shear strength of clays as modified by Ph variations[J]. Bull Eng Geol Environ, 2012, 71: 135-148.
    [5]
    汤连生. 水-土化学的力学效应及机理分析[J]. 中山大学学报(自然科学版), 2000, 39(4): 104-109. (TANG Lian-sheng. Mechanical effect of chemical action of water on soil and analysis on its mechanism[J]. Acta Scientiarum Naturalium Unversitatis Sunyatseni (Natural Science), 2000, 39(4): 104-109. (in Chinese))
    [6]
    王 军, 曹 平. 水土化学作用对土体抗剪强度的影响[J]. 中南大学学报(自然科学版), 2010, 41(1): 245-249. (WANG Jun, CAO Ping. Influence of chemical action of water on soil shear strength[J]. Journal of Central South University (Natural Science), 2010, 41(1): 245-249. (in Chinese))
    [7]
    NAEINI S A, JAHANFAR M A. Eeffect of salt solution and plasticity index on undrain shear strength of clays[J]. World Academy of Science, Engineering and Technology, 2011, 49: 982-986.
    [8]
    WARKENTIN B P, YONG R N. Shear strength of montmorillontite and kaolinite related to interparticle forces[J]. Clays and Clay Minerals, 1962, 9: 210-218.
    [9]
    STUDDS P G, STEWART D I , COUSENS T W. The effects of salt solutions on the properties of bentonite-sand mixtures[J]. Clay Minerals, 1998, 33: 651-660.
    [10]
    PI MAIO C. Exposure of bentonite to salt solution: osmotic and mechanical effects[J]. Géotechnique, 1996, 46(4): 695-707.
    [11]
    RAND B, PEKENC E. Investigation into the existence of edge-face coagulated structures in na-montmorillonite suspensions[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistryin Condensed Phases, 1980, 76: 225-235.
    [12]
    SL237—1999土工试验规程[S]. 1999. (SL237—1999 Specification of soil tests[S]. 1999. (in Chinese))
    [13]
    MICHELE C, MARILENA L, ROBERTO V, et al. Compressibility and residual shear strength of smectitic clays: influence of pore aqueous solutions and organic solvents[J]. Italiana Geotechnical, 2005, 1: 34-46.
    [14]
    SANTAMARINA J C, KLEIN K A. Micro-scale aspects of chemical-mechanical coupling: interparticle forces and fabric[M]// Chemo-Mechanical Coupling in Clays: from Nano-Scale to Engineering Applications, MAIO C D, HUECKEL T, LORET B, ed. A.A. Balkema, Lisse, Maratea, 2002: 47-64.
    [15]
    WEI Chang-fu. A theoretical framework for modeling the Chemo-mechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13(9): 1-21. (in Chinese))
    [16]
    JAMES K. Mitchell and kenichi soga[M]// Fundamentals of Soil Behavior, MITCHELL James K, SOGA Kenichi, ed. New York: Wiley, 2005
    [17]
    LAME T W, ASCE F. A mechanistic picture of shear strength in clay[C]// Soil Shear Strength Confence. Boulder, 1960: 555-580.
  • Cited by

    Periodical cited type(8)

    1. 介玉新. Rowe剪胀方程及一种新的推导方法. 水力发电学报. 2024(01): 109-123 .
    2. 蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 .
    3. 王步雪岩,孟庆山,钱建固. 基于体积变化的珊瑚砂砾破碎率研究. 岩土力学. 2024(07): 1967-1975 .
    4. 蔡新合,朱雨萌,李国英. 基于广义塑性理论框架的堆石料变形计算. 水利水运工程学报. 2024(04): 127-139 .
    5. 程诗芸,彭杨旭,张紫怡,郝晨曦,丰家俊,郭鸿. 土颗粒破碎机理的研究进展. 安徽建筑. 2023(01): 141-143 .
    6. 王柳江,刘啸宇,刘斯宏,扎西顿珠,沈超敏. 改进hhu-SH模型及其在面板堆石坝工程中的应用. 河海大学学报(自然科学版). 2023(02): 64-72 .
    7. 陈榕,武智勇,郝冬雪,高宇聪. 高应力下石英砂三轴剪切颗粒破碎演化规律及影响. 岩土工程学报. 2023(08): 1713-1722 . 本站查看
    8. 迟世春,郭宇,马锡钰,贾宇峰. 颗粒流变破碎与堆石料流变应变计算. 水力发电. 2023(10): 77-84+91 .

    Other cited types(8)

Catalog

    Article views (410) PDF downloads (535) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return