• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Fu-xing, WANG Bo, ZHAI Ming-hua, GUO Xin-shan, HUANG Guang-wei, HUANG Jun-rui. Field tests on fixed-point hydraulic fracture with extra-high pressure in coal seam for rock burst prevention[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 526-531. DOI: 10.11779/CJGE201503017
Citation: JIANG Fu-xing, WANG Bo, ZHAI Ming-hua, GUO Xin-shan, HUANG Guang-wei, HUANG Jun-rui. Field tests on fixed-point hydraulic fracture with extra-high pressure in coal seam for rock burst prevention[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 526-531. DOI: 10.11779/CJGE201503017

Field tests on fixed-point hydraulic fracture with extra-high pressure in coal seam for rock burst prevention

More Information
  • Received Date: August 15, 2014
  • Published Date: March 23, 2015
  • Considering the current domestic and overseas situations of lacking mature active regional technology for rock burst prevention, a kind of new technology is introduced using fixed-point hydraulic fracturing with ultra-high pressure to form regional low stress areas in coal body for facilitating rapid excavation and mining. The field tests are carried out at the mining depth of about 1000 m in Shandong Huafeng Coal Mine. In order to monitor the whole process of the tests, microseismic monitoring system, stress dynamic real-time monitoring system and pressure sensors are used to monitor coal and rock fracture, stress variation in coal and rock and line pressure, respectively. The main conclusions are as follows: (1) After the fracture pressure reaches 24 MPa and remaines for about 11 seconds, the first fracture occurs in the coal, and then the fracture radius reaches 8 m when the pressure stays at the same level for around 13 minutes; (2) The stress performance of time sequence in the whole fracture process is that: the stress of the observation point 9.5 m away from the fracture point increases significantly after the water is pressurized→fracture occurs in the coal→line pressure plunges→stress at the observation point tends to be stable; (3) The fracture process approximately cuts the coal into cuboids of 6.2 m×8.0 m×6.2 m, and reduces coal burst tendency effectively with the injection of a great deal of water; (4) The tests show that the fixed-point hydraulic fracture can achieve rock burst prevention by means of “stress transfer, coal weakening and energy storage decrease”.
  • [1]
    姜瑞忠, 蒋廷学, 汪永利. 水力压裂技术的近期发展及展望[J]. 石油钻采工艺, 2004, 26(4): 52-56. (JIANG Rui-zhong, JIANG Ting-xue, WANG Yong-li. Present development and prospecting of hydraulic fracturing technology[J]. Oil Drilling & Production Technology, 2004, 26(4): 52-56. (in Chinese))
    [2]
    唐 颖, 唐 玄, 王广源, 等. 页岩气开发水力压裂技术综述[J]. 地质通报, 2011, 30(2): 393-399. (TANG Ying, TANG Xuan, WANG Guang-yuan, et al. Summary of hydraulic fracturing technology in shale gas development[J]. Geological Bulletin of China, 2011, 30(2): 393-399. (in Chinese))
    [3]
    王玉海, 王庆红, 闫桂芳, 等. 煤层气井压裂效果评价方法[J]. 油气井测试, 2010, 19(5): 44-47. (WANG Yu-hai, WANG Qing-hong, YUAN Gui-fang, et al. Evaluation method of fracturing effect for coal-bed gas wells[J]. Well Testing, 2010, 19(5): 44-47. (in Chinese))
    [4]
    吴向前, 窦林名, 贺 虎, 等. 济三煤矿深孔定向水力致裂防冲技术[J]. 中国煤炭, 2011, 37(10): 85-88. (WU Xiang-qian, DOU Lin-ming, HE Hu, et al. Technology of directional hydraulic fracture for rock-burst prevention in Jisan coal mine[J]. China Coal, 2011, 37(10): 85-88. (in Chinese))
    [5]
    黄炳香, 程庆迎, 刘长友, 等. 煤岩体水力致裂理论及其工艺技术框架[J]. 采矿与安全工程学报, 2011, 28(2): 167-173. (HUANG Bing-xiang, CHENG Qing-ying, LIU Chang-you, et al. Hydraulic fracturing theory of coal-rock mass and its technical framework[J]. Journal of Mining and Safety Engineering, 2011, 28(2): 167-173. (in Chinese))
    [6]
    窦林名, 何学秋. 冲击矿压防治理论与技术[M]. 徐州: 中国矿业大学出版社, 2001: 1-17. (DOU Lin-ming, HE Xue-qiu. The theory and technology of shock pressure in coal mine[M]. Xuzhou: China University of Mining and Technology Press, 2001: 1-17. (in Chinese))
    [7]
    章梦涛, 宋维源, 潘一山. 煤层注水预防冲击地压的研究[J]. 中国安全科学学报, 2003, 13(10): 69-72. (ZHANG Meng-tao, SONG Wei-yuan, PAN Yi-shan. Study on water pouring into coal seam to prevent rock-burst[J]. China Safety Science Journal, 2003, 13(10): 69-72. (in Chinese))
    [8]
    姜福兴, 魏全德, 姚顺利, 等. 冲击地压防治关键理论与技术分析[J]. 煤炭科学技术, 2013, 41(6): 6-9. (JIANG Fu-xing, WEI Quan-de, YAO Shun-li, et al. Key theory and technical analysis on mine pressure bumping prevention and control[J]. Coal Science and Technology, 2013, 41(6): 6-9. (in Chinese))
    [9]
    姜耀东, 潘一山, 姜福兴, 等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报, 2014, 39(2): 205-213. (JIANG Yao-dong, PAN Yi-shan, JIANG Fu-xing, et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society, 2014, 39(2): 205-213. (in Chinese))
    [10]
    齐庆新, 雷 毅, 李宏艳, 等. 深孔断顶爆破防治冲击地压的理论与实践[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3522-3527. (QI Qing-xin, LEI Yi, LI Hong-yan, et al. Theory and application of prevention of rock burst by break-tip blast in deep hole[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3522-3527. (in Chinese))
    [11]
    杨光宇, 姜福兴, 王存文. 大采深厚表土复杂空间结构孤岛工作面冲击地压防治技术研究[J]. 岩土工程学报, 2014, 36(1): 189-194. (YANG Guang-yu, JIANG Fu-xing, WANG Cun-wen. Prevention and control technology of mine pressure bumping of coal mining face in seam island based on deep mining and thick topsoil of complex spatial structure of overlying strata[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 189-194. (in Chinese))
    [12]
    王维虎. 煤层注水防尘技术的应用现状及展望[J]. 煤炭科学技术, 2011, 39(1): 57-60. (WANG Wei-hu. Application present status and outlook of seam water injection dust control technology[J]. Coal Science and Technology, 2011, 39(1): 57-60. (in Chinese))
    [13]
    张笑难, 蔡 峰, 费玉祥, 等. 煤层注水除尘技术在综掘工作面中的应用[J]. 中国安全生产科学技术, 2013, 9(10): 85-88. (ZHANG Xiao-nan, CAI Feng, FEI Yu-xiang, et al. Research and application of affusion dust removal technology in the mechanized excavation face[J]. Journal of Safety Science and Technology, 2013, 9(10): 85-88. (in Chinese))
    [14]
    黄炳香, 程庆迎, 陈树亮, 等. 突出煤层深孔水力致裂驱赶与浅孔抽采消突研究[J]. 中国矿业大学学报, 2013, 42(5): 701-711. (HUANG Bing-xiang, CHENG Qing-ying, CHEN Shu-liang, et al. Study of coal seam outburst mitigation by deep hole hydro-fracturing and shallow hole methane drainage[J]. Journal of China University of Mining & Technology, 2013, 42(5): 701-711. (in Chinese))
    [15]
    石必明, 穆朝民. 突出煤层注水湿润防突试验研究[J]. 煤炭科学技术, 2013, 41(9): 147-150. (SHI Bi-ming, MU Chao-min. Experiment study on water injection and moist role for outburst prevention of outburst seam[J]. Coal Science and Technology, 2013, 41(9): 147-150.(in Chinese))
    [16]
    欧阳振华, 齐庆新, 张 寅, 等. 水压致裂预防冲击地压的机理与试验[J]. 煤炭学报, 2011, 36(增刊2): 321-325. (OUYANG Zhen-hua, QI Qing-xin, ZHANG Yin, et al. Mechanism and experiment of hydraulic fracturing in rock burst prevention[J]. Journal of China Coal Society, 2011, 36(S2): 321-325. (in Chinese))
    [17]
    张新科. 高压水力压裂技术在冲击地压防治中的应用[J]. 煤矿安全, 2010, 41(8): 51-52. (ZHANG Xin-ke. The application of the high pressure hydraulic fracturing technology for prevention of rock burst[J]. Safety in Coal Mines, 2010, 41(8): 51-52. (in Chinese))
    [18]
    郭相斌. 煤层定向水力压裂防治冲击地压的试验研究[J]. 煤炭科学技术, 2011, 39(6): 12-14. (GUO Xiang-bin. Experiment study on mine pressure bumping prevention and control with directional hydraulic fracturing in seam[J]. Coal Science and Technology, 2011, 39(6): 12-14. (in Chinese))

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return