• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BAO Cheng-gang, TONG Jun, DING Jin-hua. Reasonable selection of rheological parameters of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 410-418. DOI: 10.11779/CJGE201503003
Citation: BAO Cheng-gang, TONG Jun, DING Jin-hua. Reasonable selection of rheological parameters of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 410-418. DOI: 10.11779/CJGE201503003

Reasonable selection of rheological parameters of geosynthetics

More Information
  • Received Date: June 02, 2014
  • Published Date: March 23, 2015
  • The influence of rheological properties of geosynthetics in engineering should be considered properly. For this purpose, a creep reduction factor is considered in the design tensile strength. However, the selected value of this factor is too conservative in the current time. Based on the test results, the stress level applied on geosynthetic materials is the critical factor for the influence of creep on rupture. Whereas, according to the monitoring data from international and domestic reinforced structures, the stress level for geosynthetics reinforcement is mostly quite low, and it is only several percent of the design tensile strength. The largest values of stress and deformation in reinforcement appear at the end of construction time. Moreover, some creep tests are performed under the condition without any lateral pressure on test specimen, and the influence of creep will be enlarged. Otherwise, the relaxation property should be concerned for reinforced structures, and it will reduce the influence of creep. Finally, the reasonable value of creep reduction factor is suggested.
  • [1]
    包承纲, 丁金华, 汪明元. 极限平衡理论在加筋土结构设计中应用的评述[J]. 长江科学院院报, 2014, 31(3): 1-10. (BAO Cheng-gang, DING Jin-hua, WANG Ming-yuan. Review on limited balance theory applied in the design of reinforced soil structures[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 1-10. (in Chinese))
    [2]
    FONYO B, SACCHETTI A. Design software comparison of reinforced steep slopes[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 1819-1822.
    [3]
    BRÄU G, HEROLD A, LÜKING J, et al. EBGEO 2010-Recommendation for reinforcement with geo- synthetics[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 233-236.
    [4]
    TATSUOKA F, KOSEKI J, TATEYAMA M. Introduction to Japanese codes for reinforced soil design[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 247-258;
    [5]
    MONTRI D. A case study of reinforced slope in Thailand: Lumpang-Lamphun highway[C]// 8th International Con- ference on Geosynthetics. Millpress, Rotterdam, 2006: 1109-1112
    [6]
    李广信. 关于土工合成材料加筋设计的若干问题[J]. 岩土工程学报, 2013, 35(4): 605-610. (LI Guang-xin. Some problems in design of geosynthetic-reinforced soil structures[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 605-610. (in Chinese))
    [7]
    MICHAEL Dobie, 何 波. 加筋土结构设计方法及设计安全冗余分析[J]. 长江科学院院报, 2014, 31(3): 115-121. (MICHAEL D, SINDY He. Reinforced soil retaining walls: an outline of design methods and sources of conservatism[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 115-121. (in Chinese))
    [8]
    匡希龙, 周志刚, 王桂尧. 基于特种筋材蠕变试验预应变加筋法应用研究及计算模型[J]. 岩石力学与工程学报, 2007, 26(A01): 3107-3113. (KUANG Xi-long, ZHOU Zhi-gang, WANG Gui-yao. Application study and calculation model of prestrain reinforcement technique based on creep experiment of geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(A01): 3107-3113. (in Chinese))
    [9]
    蔡德钩, 史存林, 张千里, 等. 基于格栅蠕变的桩网支承路基中加筋网垫受力变形特性分析[C]// 土工合成材料加筋–机遇与挑战. 青岛, 2009: 177-182. (CAI De-gou, SHI Cun-lin, ZHANG Qian-li, et al. Behavior analysis of deformation for reinforced layer with geogrids in a piled embankment based on creep property[C]// Geosynthetics Reinforcement-Chance & Challenge. Qingdao, 2009: 177-182. (in Chinese))
    [10]
    Müller-Rochholz Jochen, Retzlaff Jan. Long term performance of geosynthetics[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 455-462.
    [11]
    YAO S S, HSUAN Y G. Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geo- grids[J]. Geotextile and Geomenbranes, 2010, 28(5): 400-421.
    [12]
    王 钊. 土工织物的拉伸蠕变特性和预应力加筋堤[J]. 岩土工程学报, 1992, 14(2): 12-20. (WANG Zhao. Tensile and creep properties of geotextiles and pretensioned reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(2): 12-20. (in Chinese))
    [13]
    丁金华, 周武华. HDPE土工格栅在有约束条件下蠕变特性的试验研究[J]. 长江科学院院报, 2012, 29(4): 49-51. (DING Jin-hua, ZHOU Wu-hua. Creep property of HDPE geogrid with sand confinement[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(4): 49-51. (in Chinese))
    [14]
    丁金华, 包承纲, 陈仁朋. 加筋土结构中筋材抗拉强度的取值方法研究[J]. 水利学报, 2012, 43(12): 1464-1469. (DING Jin-hua, BAO Cheng-gang, CHEN Ren-peng. A method to determine the design value of reinforcement tensile strength in reinforced soil structure[J]. Journal of Hydraulic Engineering, 2012, 43(12): 1464-1469. (in Chinese))
    [15]
    TONG J, GONG B, LIU J. Experimental study and prediction on the long-term creep properties for geogrids at different temperatures[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 873-876.
    [16]
    BUENO B S. Long-term performance of geosynthetics[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 439-453.
    [17]
    杨广庆, 杜学玲, 周乔勇, 等. 土工格栅加筋石灰土挡墙工程特性试验研究[J]. 岩土工程学报, 2010, 32(12): 1904-1909. (YANG Guang-qing, DU Xue-ling, ZHOU Qiao-yong, et al. Field tests on behaviors of geogrid- reinforced lime treated soil retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1904-1909. (in Chinese))
    [18]
    何其武, 陈丽丽, 王旭龙. 斜坡地基土工格栅加筋土高边坡现场试验研究[C]// 土工合成材料加筋–机遇与挑战. 青岛, 2009: 368-377. (HE Qi-wu, CHEN Li-li, WANG Xu-long. In-situ tests for a reinforced high-slope with geogrids at tilted foundation[C]// Geosynthtics Reinforcement- Chance & Challenge. Qingdao, 2009: 368-377. (in Chinese))
    [19]
    ASCHAUER F, WU W, OBERREITER K. Investigation of the behavior of geosynthetic/soil systems in reinforced-soil structures[C]// 8th International Conference on Geosynthetics. Millpress, Rotterdam, 2006: 1049-1052.
    [20]
    KONGKITKUL W, TATSUOKA F, HIRAKAWA D, et al. Post-construction tensile load and strain behaviour of geogrids arranged in full-scale high walls[C]// 9th International Conference on Geosynthetics. Brazil, 2010, 1605-1610.
    [21]
    SAYÃO A S F J, BECKER L B, NUNES A L L S, et al. Behavior of a geogrid reinforced soil wall built with clayey silt[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 1685-1688.
    [22]
    HERLE V. Prediction and performance of reinforced soil structures[C]// 8th International Conference on Geosynthetics. Millpress, Rotterdam, 2006: 1113-1116.
    [23]
    胡汉兵, 姜志全, 蔡汉利. 土工格栅施工损伤现场足尺试验研究[J]. 岩土工程学报, 2012, 34(5): 906-910. (HU Han-bing, JIANG Zhi-quan, CAI Han-li. Full-scale field tests on installation damage of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 906-910. (in Chinese))
  • Related Articles

    [1]HAN Xingbo, CHEN Ziming, YE Fei, LIANG Xiaoming, FENG Haolan, XIA Tianhan. Model tests on disturbance characteristics of surrounding rock of loess shield tunnels during excavation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 968-977. DOI: 10.11779/CJGE20230054
    [2]WANG Jianming, CUI Xinnan, CHEN Zhonghui, CHEN Chong. Mechanism and stability of unloading fracture in rock slopes containing trailing edge cracks in open pit mines[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 345-353. DOI: 10.11779/CJGE20211541
    [3]SHE Fang-tao, WU Zheng-qi, ZHOU Wei-zong, LIU Guo-ping, LI Lei. Deformation control of surrounding rock of rectangular pipe-jacking tunnels considering key construction parameters[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 247-253. DOI: 10.11779/CJGE2022S1044
    [4]ZHU Zhao-hui, REN Da-chun, LI Xiu-wen, SUN Jian-hui, WANG Wan-shun. Application of fiber Bragg grating displacement meter groups in continuous monitoring of deformation of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2093-2100. DOI: 10.11779/CJGE201611020
    [5]ZHENG Jun-jie, ZHANG Rong-jun, PAN Yu-tao, CUI Lan. Analytic method for passive piles considering excavation-induced unloading effects and deformation coupling effect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 606-614.
    [6]WU Yong-ping, WU Xue-ming. Large-scale 3D simulati on of rock-mass deformation under static-dynamical coupling loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1504-1510.
    [7]WU Zhangzhong, XU Guangli, WU Li, YE Qian. Mechanical deformation characteristics of rock mass surrounding lateral enlarging excavation of tunnels with ultra-large sections[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 172-177.
    [8]CHEN Yijun, LIU Changwu, XU Jin, FANG Yanqiang. Application of new spigot coaxial rod extensometer in monitoring deformation of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1084-1089.
    [9]Jiang Hongdao, Li Zhaoyin, Chen Guorong. Application of 3-D BEM for Deformation and Stability Analysis on the Surrounding Rock of Underground Tunnels Group[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(5): 12-18.
    [10]Chen Xiangzhen, Wang Zhiming. Deformation Analysis of Surrounding Rock on Diversion Tunnel in Lubuge Hydraulic Power Station[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 59-65.
  • Cited by

    Periodical cited type(3)

    1. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究. 中南大学学报(自然科学版). 2024(03): 1008-1022 .
    2. 宾伟,黄靓,曾令宏,刘文琦,屈辉,彭龙辉,李东. 水泥固化再生骨料改性盐渍土的路用性能研究. 公路. 2024(08): 94-100 .
    3. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形试验及预估模型. 中国公路学报. 2023(10): 17-29 .

    Other cited types(12)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return