• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
FU Hua, CHEN Sheng-Shui, HAN Hua-qiang, LING Hua, CAI Xin. Experimental study on static and dynamic properties of cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 357-362. DOI: 10.11779/CJGE201502021
Citation: FU Hua, CHEN Sheng-Shui, HAN Hua-qiang, LING Hua, CAI Xin. Experimental study on static and dynamic properties of cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 357-362. DOI: 10.11779/CJGE201502021

Experimental study on static and dynamic properties of cemented sand and gravel

More Information
  • Received Date: May 19, 2014
  • Published Date: March 01, 2015
  • The static and dynamic triaxial shear tests and deformation tests on CSG (cemented sand and gravel) with different amounts of added cementing materials are performed. The mechanical indexes and parameters obviously increase with mixing of cementing materials and accumulation of curing days. However, the increase will become mild with further adding of the cementing materials. The deformation curve of CSG test sample is similar to that of sand-gravel sample without mixing with any cementing materials, and they both follow the trend of semi-logarithmic attenuation law. The dynamic permanent deformation of CSG increases with the increase of confining pressure, consolidation stress and dynamic stress. Thus this deformation still can be calculated using the constitutive model for dynamic residual deformation proposed by Shen Zhujiang.
  • [1]
    RAPHAEL J M. The optimum gravity dam, rapid construction of concrete dams[C]// ASCE. New York, 1970.
    [2]
    LONDE P, LINO M. The faced symmetrical hardfill dam: a new concept for RCC[J]. International Water Power & Dam Construction, 1992, 44(2): 19-24.
    [3]
    陆述远, 唐新军. 一种新坝型-面板胶结堆石坝简介[J]. 长江科学院院报, 1998, 15(2): 54-56. (LU Shu-yuan, TANG Xin-jun. Brief introductionto anew type of dam called face plate cementing rockfill dam[J]. Journal of Yangtze RIVER Scientific Research Institute, 1998, 15(2): 54-56. (in Chinese))
    [4]
    杨世华. 林一山治水文集[M]. 北京: 新华出版社, 1981: 562-575. (YANG Shi-hua. Water control collections of Lin Yishan[M]. Beijing: Xinhua Publishing House, 1981: 562-575. (in Chinese))
    [5]
    BATMAZ S. Clidere dam-107m high roller compacted dam(RCHD) in Thrkey[C]// Proceedings 4th international Symposium on Roller Compacted Concrete Dams. Madrid, 2003: 121-126.
    [6]
    GURDIL A F, BATMAZ S. Structural design of Cindere Dam[C]// Proceedings 4th international Symposium on Roller Compacted Concrete Dams. Madrid, 2003: 439-446.
    [7]
    HATTORI Y. Construction of a sediment trap Dam using CSG conctete[J]. Dam Technology, 1993, 150(3):50-58.
    [8]
    NAGAYAMA I. Development of the CSG construction method for sediment trap dams[J]. Civil Engineering Journal, 1999, 41(7): 6-17.
    [9]
    腾忠明. 梯形 CSG 大坝与 CSG 材料特性[J]. 国际水利发电, 2005(3): 39-42. (TENG Zhong-ming. Ladder CSG dam and characteristic of CSG materials[J]. Intentional Hydropower, 2005(3): 39-42. (in Chinese) )
    [10]
    贾金生, 马锋玲, 李新宇, 等. 胶凝砂砾石坝材料特性研究及工程应用[J]. 水利学报, 2006, 37(5): 578-582. (JIA Jin-sheng, MA Feng-ling, LI Xin-yu, et al. Study on material characteristics of cement-sand-gravel dam and engineering application[J]. Journal of Hydraulic Engineering, 2006, 37(5): 578-582. (in Chinese))
    [11]
    杨首龙. CSG 坝筑坝材料特性与抗荷载能力研究[J]. 土木工程学报, 2007, 40(2): 97-103. (YANG Shou-long. Characteristics and load carrying capacity of CSG dam construction materials[J]. China Civil Engineering Journal, 2007, 40(2): 97-103. (in Chinese))
    [12]
    肖兰, 何蕴龙, 张艳锋. CSG 技术在围堰工程中的应用[J]. 水利与建筑工程学报, 2008, 6(2): 15-18. (XIAO Lan, HE Yun-long, ZHANG Yan-feng. Application of CSG method in construction of cofferdam[J]. Journal of Water Resources and Architectural Engineering, 2008, 6(2): 15-18. (in Chinese))
    [13]
    杨朝晖, 赵其兴, 符祥平, 等. CSG 技术研究及其在道塘水库的应用[J]. 水利水电技术, 2007, 38(8): 46-49. (YANG Zhao-hui, ZHAO Qi-xing, FU Xiang-ping, et al. Study on CSG dam construction technique and its application to Daotang reservoir project[J]. Water Resources and Hydropower Engineering, 2007, 38(8): 46-49. (in Chinese))
    [14]
    黎学皓, 刘勇. CSG 筑坝技术在洪口过水围堰中的应用[J]. 水利水电施工, 2009(3): 15-20. (LI Xue-hao, LIU Yong. Application of CSG dam construction technique in Hongkou overtopped cofferdam[J]. Water Conservancy and Hydropower Project, 2009(3): 15-20. (in Chinese))
    [15]
    孙明权, 刘运红, 陈姣姣, 等. 胶凝砂砾石材料本构模型研究[J]. 华北水利水电学院学报, 2012(5): 13-15. (SUN Ming-quan, LIU Yun-hong, CHEN Jiao-jiao, et al. Study on constitutive model of cemented sand and gravel material[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012(5): 13-15. (in Chinese))
    [16]
    何蕴龙, 彭云枫, 熊堃. Hardfill 坝筑坝材料工程特性分析[J].水利与建筑工程学报, 2007, 5(4): 1-6. (HE Yun-long, PENG Yun-feng, XIONG Kun. Analysis on material property of Hardfill Dam[J]. Journal of Water Resources and Architectural Engineering, 2007, 5(4): 1-6. (in Chinese))
    [17]
    孙明权, 彭成山, 李永乐, 等. 超贫胶结材料三轴试验[J]. 水利水电科技进展, 2007(4): 40-41,45. (SUN Ming-quan, PENG Cheng-shan, LI Yong-le, et al. Triaxial test of over lean cemented material[J]. Advances in Science and Technology of Water Resources, 2007(4): 40-41,45. (in Chinese))
    [18]
    武颖利. 胶凝堆石坝坝料力学特性及大坝工作性态研究[D]. 南京: 河海大学, 2010. (WU Ying-li. Study on the mechanical properties and the working behavior of CSG dams[D]. Nanjing: Hohai University, 2010. (in Chinese))
    [19]
    沈珠江, 徐刚. 堆石料的动力变形特性[J]. 水利水运科学研究, 1996, 6(2): 143-150. (SHEN Zhu-jiang, XU Gang. Deformation behavior of rock materials under cyclic loading[J]. Journal of Nanjing Hydraulic Research Institute, 1996, 6(2): 143-150. (in Chinese))
  • Related Articles

    [1]LIANG Hao, LI Dayong, WU Yuqi. Pull-out bearing behavior and failure mode of scaled suction caissons[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1928-1935. DOI: 10.11779/CJGE20230556
    [2]LIU Qi-fei, ZHUANG Hai-yang, CHEN Jia, WU Qi, CHEN Guo-xing. Tests on shear strength and failure mode of rubber particle-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895. DOI: 10.11779/CJGE202110015
    [3]LÜ Bu, YANG Zhi-jun, WEI Xiu-dong, LU Ji-zhong, FU Xu-dong. Failure modes and constitutive model for weak interlayer of dam foundation with different inclination angles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 189-192. DOI: 10.11779/CJGE2019S1048
    [4]ZHENG Gang, GUO Zhi-yi, YANG Xin-yu, ZHOU Hai-zuo, YU Xiao-xuan, ZHAO Jia-peng, XIA Bo-yang. Influences of stiffness of piles on failure modes of embankment of composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 49-52. DOI: 10.11779/CJGE2019S1013
    [5]YANG Bing, SUN Ming-xiang, WANG Run-ming, YANG Tao, FENG Jun, ZHOU De-pei. Shaking table tests on influences of water content of soils on dynamic failure modes and dynamic responses of slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 759-767. DOI: 10.11779/CJGE201804021
    [6]YU Jian-lin, LI Jun-yuan, WANG Chuan-wei, ZHANG Jia-lin, GONG Xiao-nan, CHEN Chang-fu, SONG Er-xiang. Stability of composite foundation improved by rigid piles under embankment considering different failure modes of piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 37-40. DOI: 10.11779/CJGE2017S2010
    [7]FAN Gang, ZHANG Jian-jing, FU Xiao, WANG Zhi-jia, TIAN Hua. Energy identification method for dynamic failure mode of bedding rock slope with soft strata[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 959-966. DOI: 10.11779/CJGE201605024
    [8]SONG Fei, XIE Yong-li, YANG Xiao-hua, ZHANG Lu-yu. Failure mode of geocell flexible retaining wall with surcharge acting on backfill surface[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 152-155.
    [9]LI Xun-chang, MEN Yu-ming, ZHANG Tao, LIU Hong-jia, YAN Jing-ping. Experimental study on failure modes for anti-slide piles with a single anchor[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 803.
    [10]ZHOU Jian, KONG Xiangli, WANG Xiaocun. Bearing capacity behaviours and failure modes of reinforced grounds[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1265-1269.
  • Cited by

    Periodical cited type(21)

    1. 艾楠,宋辰宁,王培森. 地铁运行对邻近建筑振动响应研究. 山东建筑大学学报. 2025(01): 32-40 .
    2. 杨超,朱硕,董文韬. 基于Citespace的城市轨道交通安全研究热点与前沿可视化分析. 交通与运输. 2025(01): 82-87 .
    3. 周腾飞. 地铁列车运行引起邻近建筑物振动响应研究. 四川水泥. 2025(02): 26-28 .
    4. 吴思豫,戚承志,卢春生,李太行,姜凯松,龙渊腾. 地铁运行对古城墙的振动影响. 工程建设与设计. 2025(03): 73-77 .
    5. 王凯,富志强,杨春波,王俊伟. 黄土地层公路隧道运营期下穿古长城动力响应研究. 公路. 2024(04): 416-421 .
    6. 张军. 深埋地铁隧道对临近桥梁桩基的扰动分析. 工程技术研究. 2024(07): 20-23+34 .
    7. 万颖君,金鑫,马光辉,张振宇,翟洪刚,汤方程,孙苗苗. 软土地区施工现场重载车辆对基坑周围环境振动实测分析. 华南地震. 2024(02): 128-135 .
    8. 花雨萌,谢伟平,陈斌. 地铁振动对建筑物竖向楼层响应的影响研究. 建筑结构学报. 2023(03): 122-129 .
    9. 邹超,冯青松,何卫. 列车运行引起地铁车辆段与上盖建筑环境振动研究综述. 交通运输工程学报. 2023(01): 27-46 .
    10. 孙志浩,李明睿,冯国辉,徐长节,黄展军,侯世磊,何小辉. 交通荷载下叠合式公轨隧道的力学性状研究. 铁道科学与工程学报. 2023(06): 2210-2221 .
    11. 贾宝新,周志扬,苑文雅,张晶. 基于等效质点峰值振动速度的高铁线路周边建筑结构振动评价研究. 岩土力学. 2023(09): 2696-2706 .
    12. 路德春,高泽军,孔凡超,马一丁,沈晨鹏,杜修力. 地铁列车运行诱发地面邻近建筑振动的数值模拟研究. 土木与环境工程学报(中英文). 2023(06): 113-124 .
    13. 肖迪,段旭,刘武超,邹愈,董琪,叶万军. 地铁振动作用下上部正交综合管廊动力响应试验研究. 防灾减灾工程学报. 2023(05): 1151-1159 .
    14. 王韵超,王思崎,郑茗旺,郑凌逶,谢新宇. 弹簧浮置板减振措施对地铁下穿不同结构建筑物振动影响实测及分析. 低温建筑技术. 2021(03): 51-54+59 .
    15. 谭佳,许炜萍,赵楚轩,王呼佳,杨朋,孙克国. 地铁过渡段结构振动响应特性与噪声分析. 城市轨道交通研究. 2021(05): 37-41+46 .
    16. 袁庆利. 运营期地铁列车振动下软黏土的动力响应及变形研究. 国防交通工程与技术. 2021(04): 25-30 .
    17. 汪益敏,刘品言,陶子渝,陈皓粤,周杰. 地铁车辆段直线电机列车车致振动的试验研究. 铁道科学与工程学报. 2021(09): 2436-2443 .
    18. 夏志强,凌可胜,董克胜,徐小扣,沈威,方火浪. 地铁列车曲线运行引起学校建筑物振动响应分析. 地震工程学报. 2021(06): 1377-1386 .
    19. 程保青,郭婧怡,蒋浩杰. 地铁车辆段咽喉区上盖建筑振动影响. 应用声学. 2021(06): 911-917 .
    20. 郑国琛,许航莉,祁皑,郭金龙. 地铁及地面交通环境振动实测与数值模拟研究. 中国环境科学. 2020(09): 4146-4154 .
    21. 孟坤,崔春义,许民泽,王启福,苏健. 地铁运行引起的临近桥梁结构振动分析. 深圳大学学报(理工版). 2020(06): 610-616 .

    Other cited types(18)

Catalog

    Article views (371) PDF downloads (324) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return