• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LIU Ying-jing, WANG Jian-hua, YIN Zhen-yu, LI Gang, XIA Xiao-he. Constitutive modeling for granular materials considering grading effect[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 299-305. DOI: 10.11779/CJGE201502013
Citation: LIU Ying-jing, WANG Jian-hua, YIN Zhen-yu, LI Gang, XIA Xiao-he. Constitutive modeling for granular materials considering grading effect[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 299-305. DOI: 10.11779/CJGE201502013

Constitutive modeling for granular materials considering grading effect

More Information
  • Received Date: February 25, 2014
  • Published Date: March 01, 2015
  • The granular materials are widely used in geotechnical engineering, whose grading changing feature will affect their mechanical behavior obviously, especially the bearing capacity. In order to well describe the influence of grain-size distribution on the mechanical behavior of granular materials, a simple constitutive model taking into account the grading-dependent critical state line is developed within the framework of elasto-plasticity and the critical state theory. The model is used to simulate the drained and undrained triaxial compression tests on different types of granular materials (DEM ideal sphere, artificial material glass ball and natural material Hostun sand). It is found that only one group of grading-dependent critical state parameters is needed for describing the mechanical response of granular materials with different gradings.
  • [1]
    INDRARATNA B, WIJEWARDENA L S S, BALASUBRAMANIAM A S. Large-scale triaxial testing of grey wacke rockfill[J]. Géotechnique, 1993, 43(1): 37-51.
    [2]
    GHANBARI A, SADEGHPOUR A H, MOHAMADZADEH H, et al. An experimental study on the behavior of rockfill materials using large scale tests[J]. Electronic Journal of Geotechnical Engineering, 2008, 13: 1-16.
    [3]
    张家铭, 蒋国盛, 汪 稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. (ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese))
    [4]
    尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. (YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese))
    [5]
    COOP M R. The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626.
    [6]
    VERDUGO R, DE LA Hoz K. Strength and stiffness of coarse granular soils[M]// Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Berlin: Springer Netherlands, 2007: 243-252.
    [7]
    BIAREZ J, HICHER P Y. Influence de la granulométrie et de son evolution par ruptures de grains sur le comportement mécanique de matériaux granulaires[J]. Revue Francaise de Genie Civil, 1997, 1(4): 607-631. (BIAREZ J, HICHER P Y. Influence of evolution of gradation induced by particle repture on the mechanical behavior of granular material. French Journal of Civil Engineering, 1997, 1(4): 607-631. (in Frence))
    [8]
    DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J] . European Journal of Mechanics-A/Solids, 2001, 20(1): 113-137.
    [9]
    李罡, 刘映晶, 尹振宇, 等. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014. 36(3): 452-457. (LI Gang, LIU Ying-jing, YIN Zhen-yu, et. al. Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014. 36(3): 452-457. (in Chinese))
    [10]
    栾茂田, 刘鹏, 王忠涛. 考虑剪切中主应力方向的砂土本构模型[J]. 水利学报, 2013, 44(4): 470-477. (LUAN Mao-tian, LIU Peng, WANG Zhong-tao. Constitutive model of sand considering shearing orientation of principal stress[J]. Journal of Hydraulic Engineering, 2013, 44(4): 470-477. (in Chinese))
    [11]
    罗刚, 张建民. 考虑物理状态变化的砂土本构模型[J]. 水利学报, 2004, 35(7): 26-31. (LUO Gang, ZHANG Jian-min. Constitutive model for sand considering the variation of its physical state[J]. Journalo of Hydraulic Engineering, 2004, 35(7): 26-31. (in Chinese))
    [12]
    LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2011, 138(3): 263-275.
    [13]
    黄茂松, 李学丰, 贾苍琴. 基于材料状态相关临界状态理论的砂土双屈服面模型[J]. 岩土工程学报, 2010, 32(11): 1764-1771. (HUANG Mao-song, LI Xue-feng, JIA Cang-qin. A double yield surface constitutive model for sand based on state-dependent critical state theory[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1764-1771. (in Chinese))
    [14]
    张卫华, 赵成刚, 傅方. 饱和砂土相变状态边界面本构模型[J]. 岩土工程学报, 2013, 35(5): 930-939. (ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. (in Chinese))
    [15]
    WOOD D M, MAEDA K, NUKUDANI E. Modelling mechanical consequences of erosion[J]. Géotechnique, 2010, 60(6): 447-457.
    [16]
    RICHART F E, HALL J R, WOODS R D. Vibrations of soils and foundations[M]. Englewood Cliffs: Prentice-Hall, 1970.
    [17]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [18]
    VERMEER P A. A double hardening model for sand[J]. Géotechnique, 1978, 28(4): 413-433.
    [19]
    HU W, YIN Z Y, DANO C, et al. A constitutive model for granular materials considering grain breakage[J]. Science China Technological Sciences, 2011, 54(8): 2188-2196.
    [20]
    ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451..
    [21]
    LUONG M P. Stress-strain aspects of cohesionless soils under cyclic and transient loading[C]// Proc Int Symp on Soils under Cyclic and Transient Loading. Rotterdam: A A Balkema, 1980: 315-324.
    [22]
    ROSCOE K H, SCHOFIELD A N, WROTH C P. On the yielding of soils[J]. Géotechnique, 1958, 8(1): 22-53.
    [23]
    BEEN K, JEFFERIES M G, HACHEY J. The critical state of sands[J]. Géotechnique, 1991, 41(3): 365-381.
    [24]
    BIAREZ J, HICHER P Y. Elementary mechanics of soil behaviour: saturated remoulded soils[M]. Rotterdam: A A Balkema, 1994.
    [25]
    YAN W M, DONG J. Effect of particle grading on the response of an idealized granular assemblage[J]. International Journal of Geomechanics, 2011, 11(4): 276-285.
    [26]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
  • Related Articles

    [1]YANG Kaixuan, ZHAO Heng, ZHAO Minghua, JIA Wurong, HUA Xugang. Analytical solution for vertical load transfer of cast-in-place piles considering shear-induced volumetric contraction across shaft-rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1229-1238. DOI: 10.11779/CJGE20240112
    [2]ZHENG Chang-jie, CUI Yi-qin, DING Xuan-ming, LUAN Lu-bao. Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005
    [3]QI Chang-guang, LIU Han-long, CHEN Yong-hui, LIU Gan-bin, ZUO Dian-jun. Bearing capacity tests and settlement calculation method of plastic tube cast-in-place concrete pile[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2302-2308. DOI: 10.11779/CJGE201612020
    [4]LUAN Lu-bao, DING Xuan-ming, LIU Han-long, ZHENG Chang-jie. Analytical solution of lateral dynamic response of a large diameter pipe pile considering influence of axial load[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1859-1868. DOI: 10.11779/CJGE201610015
    [5]ZHAO Chun-feng, LIU Feng-ming, QIU Zhi-xiong, ZHAO Cheng, WANG Wei-zhong. Study on bearing behavior of a single pile under combined vertical and lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 183-190. DOI: 10.11779/CJGE201501023
    [6]LING Dao-sheng, ZHANG Fei-xia, WANG Yun-gang, SHAN Zhen-dong, FANG Zhi-hui. Exact solution for one-dimensional transient response of single-layer fluid-saturated porous media under arbitrary vertical loadings[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 966.
    [7]Analytical solution on dynamic response of lining subjected to sudden internal uniform loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2).
    [8]ZHENG Gang, WANG Li. Effect of loading level and sequence of vertical and lateral load on bearing capacity of single pile[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1796-1804.
    [9]DONG Tianwen, LIANG Li. Solution of load-settlement function of single screw pile under axial pressure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1483-1487.
    [10]Wei Yueguang. Perturbation Solutions for Elasto-piastic Analysis of Circular Tunnel under Unequal Compression in Two Directions[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(4): 11-20.
  • Cited by

    Periodical cited type(9)

    1. 陈芳. 基于有效固结力模型的河道堤防加固技术. 中国新技术新产品. 2024(12): 73-75 .
    2. 夏璐,张钢泉. 基于Mindlin解的自锚试桩上、下段相互作用研究. 水利技术监督. 2024(10): 151-155 .
    3. 郭帅杰,宋绪国. Mindlin方法在桩承式U形路基沉降分析中的应用. 铁道标准设计. 2023(04): 22-27+33 .
    4. 邱明兵,高文生. Mindlin解积分的方形荷载竖向应力系数初等解. 应用力学学报. 2021(02): 655-662 .
    5. 熊玉铭,何永曦,潘浩. 基于桩端和桩侧阻力相互作用的超长桩承载力研究. 能源与环保. 2021(05): 57-62+67 .
    6. 郭帅杰,宋绪国. 实体基础Mindlin方法在高铁路基沉降分析中的应用研究. 路基工程. 2020(02): 1-5+22 .
    7. 王力伟,程梦筠,蒋关鲁. 基于差异变形控制的路基分幅间距研究. 交通科技. 2020(04): 67-71 .
    8. 童星,袁静,姜叶翔,刘兴旺,李瑛. 基于Mindlin解的基坑分层卸荷附加应力计算及回弹变形的多因素影响分析. 岩土力学. 2020(07): 2432-2440 .
    9. 王东英,汤华,尹小涛,杨光华,姜燕. 基于简化力学模型的隧道锚极限承载力估值公式. 岩土力学. 2020(10): 3405-3414 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return