• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LIAO Shao-ming, MEN Yan-qing, ZHANG Di, XU Yong. Field tests on mechanical behaviors during assembly of segmental linings of Qianjiang tunnel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 156-164. DOI: 10.11779/CJGE201501019
Citation: LIAO Shao-ming, MEN Yan-qing, ZHANG Di, XU Yong. Field tests on mechanical behaviors during assembly of segmental linings of Qianjiang tunnel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 156-164. DOI: 10.11779/CJGE201501019

Field tests on mechanical behaviors during assembly of segmental linings of Qianjiang tunnel

More Information
  • Received Date: April 23, 2014
  • Published Date: January 19, 2015
  • Qianjiang tunnel is one of the soft soil shield tunnels with the largest diameter by now. In order to obtain the detailed mechanical behaviors from construction to service stage, field tests on the whole ring at the typical formation are carried out. The internal forces of linings are measured step by step during the whole process of assembling stage. The results show that the internal forces of linings are influenced by the variation of relative positions and contacts between segments, and fluctuate and are slightly adjusted and finally reach a new equilibrium state. Most of the measured internal forces during assembly of segments are usually 30% less than of the theoretical values in service, while higher, even more than 10 times, than the theoretical values during assembly. The measured values gradually approach to the theoretical ones during assembly after different levels of fluctuations or jumps. It is important to note that the variation curves of monitoring data have some individual mutations, and some even more than 3 times the theoretical values at service stage. By adjusting the relative contacts and positions between segments, the mutations return to be normal quickly. However, this process, causing local high stress possibly, has an influence on the durability and long-term bearing capacity of segments. The above characteristics should be considered carefully during the design and construction of similar projects in the future.
  • [1]
    LIAO S M, FAN Y Y, SHI Z H, et al. Optimization study on the reconstruction and expansion of an underground rail transit center in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2013, 38: 435-446.
    [2]
    LIAO S M, PENG F L, SHEN S L. Analysis of shearing effect on tunnel induced by load transfer along longitudinal direction[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 421-430.
    [3]
    LIAO S M, LIU J H, WANG R L, LI Z M. Shield tunneling and environment protection in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2009, 24: 454-465.
    [4]
    SUGIMOTO M, ARAMOON A. Theoretical model of shield behavior during excavation. I: Theory[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(2): 138-155.
    [5]
    SRAMOON A, SUGIMOTO M, KAYUKAWA K. Theoretical model of shield behavior during excavation. II: Application[J]. Journal of Geotechnical and Geoenviron- mental Engineering, ASCE, 2002, 128(2): 156-165.
    [6]
    吴鸣泉. 钢纤维混凝土盾构管片在地铁隧道工程的应用研究[J]. 广东建材, 2004(3): 6-8. (WU Ming-quan. The study on steel fiber reinforced concrete segment used in subway tunnels[J]. Guangdong Construction Material, 2004(3): 6-8. (in Chinese))
    [7]
    Working Group No.2, International Tunnelling Association. Guidelines for the design of shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2000, 15(3): 303-331.
    [8]
    BLOM C B M, van der Horst E J, JOVANOVIC P S. Three-dimensional structural analyses of the shield-driven “Green Heart” tunnel of the high-speed line south[J]. Tunnelling and Underground Space Technology, 1999, 14(2): 217-224.
    [9]
    BLOM C B M. Design philosophy of concrete linings for tunnels in soft soils[D]. Delft: Delft University of Technology, 2002.
    [10]
    SUGIMOTO M. Causes of shield segment damages during construction[C]// International Symposium on Underground Excavation and Tunnelling. Thailand, 2006: 67-74.
    [11]
    MO H H, CHEN J S. Study on inner force and dislocation of segments caused by shield machine attitude[J]. Tunnelling and Underground Space Technology, 2008, 23: 281-291.
    [12]
    CHEN J S, MO H H. Numerical study on crack problems in segments of shield tunnel using finite element method[J]. Tunnelling and Underground Space Technology, 2009, 24: 91-102.
    [13]
    廖少明, 徐进, 焦齐柱. 盾构法隧道管片拼装过程中的衬砌内力解析[J]. 土木工程学报, 2013, 46(3): 127-135. (LIAO Shao-ming, XU jin, JIAO Qi-zhu. Mechanical behaviors of tunnel lining during segment assembly[J]. China Civil Engineering Journal, 2013, 46(3): 127-135. (in Chinese))
    [14]
    徐前卫, 朱合华, 廖少明, 等. 均匀软质地层条件下土压平衡盾构施工的合理顶进推力分析[J]. 岩土工程学报, 2008, 30(1): 79-85. (XU Qian-wei, ZHU He-hua, LIAO Shao-ming, et al. Analysis of reasonable thrust force during tunnel excavation in homogeneous soft ground by use of earth pressure balance shield machine[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 79-85. (in Chinese))
    [15]
    徐前卫, 朱合华, 丁文其, 等. 均质地层中土压平衡盾构施工刀盘切削扭矩分析[J]. 岩土工程学报, 2010, 32(1): 47-54. (XU Qian-wei, ZHU He-hua, DING Wen-qi, et al. Cutting torque during tunneling process of earth pressure balance shield machine in homogeneous ground[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 47-54. (in Chinese))
    [16]
    何川, 曾东洋. 砂性地层中地铁盾构隧道管片结构受力特征研究[J]. 岩土力学, 2007, 28(5): 909-914. (HE Chuan, ZENG Dong-yang. Research on mechanical characteristics of metro shield tunnel segment in sandy strata[J]. Rock and Soil Mechanics, 2007, 28(5): 909-914. (in Chinese))
    [17]
    MOLINS C, ARNAU O. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 1: test configuration and execution[J]. Tunnelling and Underground Space Technology, 2011, 26(6): 764-777.
    [18]
    ARNAU O, MOLINS C. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 2: numberical simulation[J]. Tunnelling and Underground Space Technology, 2011, 26(6): 778-788.
    [19]
    徐进. 盾构隧道管片拼装力学机理分析[D]. 上海: 同济大学, 2013. (XU Jin. Mechanical behaviors of tunnel linning induced by segments assembly[D]. Shanghai: Tongji University, 2013. (in Chinese))
    [20]
    宋克志, 袁大军, 王梦恕. 盾构法隧道施工阶段管片的力学分析[J]. 岩土力学, 2008, 29(3): 619-623. (SONG Ke-zhi, YUAN Da-jun, WANG Meng-shu. Segmental mechanical analysis of shield tunnel during construction stage[J]. Rock and Soil Mechanics, 2008, 29(3): 619-623. (in Chinese))
    [21]
    周济民, 何川, 方勇, 等. 黄土地层盾构隧道受力监测与荷载作用模式的反演分析[J]. 岩土力学, 2011, 32(1): 165-171. (ZHOU Ji-min, HE Chuan, FANG Yong, et al. Mechanical property testing and back analysis of load models of metro shield tunnel lining in loess strata[J]. Rock and Soil Mechanics, 2011, 32(1): 165-171. (in Chinese))
  • Related Articles

    [1]Influence of compaction and hydrophobic agent content on the breakthrough pressure of hydrophobic soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240364
    [2]LIU Feiyu, KONG Jianjie, YAO Jiamin. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. DOI: 10.11779/CJGE20220287
    [3]ZHAO Wen-he, YANG Xiu-juan, WANG Bao-zhong, FAN Heng-hui, MENG Min-qiang, ZHU Zhen. Laws of water migration and settlement at interface in loess filled areas under rainfalls[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1710-1720. DOI: 10.11779/CJGE202209016
    [4]WANG Lai-cai, HU Hai-jun, WANG Chen, KANG Shun-xiang. Measurement and prediction of water retention curve of remolded loess with different degrees of compaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 204-208. DOI: 10.11779/CJGE2021S1037
    [5]WU Yang, HUANG Jin-sheng, CUI Jie, YOSHIMOTO Norimasa. Influences of particle shape and degree of compaction on shear response of clinker ash[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2220-2229. DOI: 10.11779/CJGE202112008
    [6]XU Jie, HU Hai-tao, ZHENG Zhi. Effects of compaction and water content on thermal conductivity of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048
    [7]JIA Liang, ZHU Yan-peng, ZHU Jun-chuan. Influencing factors for shear strength of Malan and Lishi compacted loess in Lanzhou[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 120-124. DOI: 10.11779/CJGE2014S2020
    [8]ZHANG Yu-hui, ZHANG Xian-min, CHENG Guo-yong. Evaluation of compactness degree of interval soil in soil-stone mixtures by use of shear-wave velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 909.
    [9]WANG Xie-qun, ZOU Wei-lie, LUO Yi-dao, WANG Jian-feng, DENG Wei-dong. SWCCs and influence of temperature on matrix suction under different compaction degrees[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 368.
    [10]Study on RIC construction method for tamping of backfill behind aboutment in express highway[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 702-705.
  • Cited by

    Periodical cited type(22)

    1. 王智超,彭柱,彭峰,闫实. 聚氨酯固化钙质砂物理力学特性. 长江科学院院报. 2024(01): 107-113 .
    2. 韩庆华,王永超,刘铭劼,李浩斌. 振动台试验饱和机制砂模型土动力特性研究. 土木工程学报. 2024(03): 110-122 .
    3. 王家全,和玉,祝梦柯,钱弘毅. 相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究. 安全与环境工程. 2024(04): 20-28 .
    4. 王钰轲,李俊豪,邵景干,余翔. 不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究. 工程科学学报. 2023(03): 509-519 .
    5. 胡健,肖杨,肖鹏,王林,丁选明,仉文岗,刘汉龙. 基于机器学习预测微生物加固钙质砂统一动强度. 中国公路学报. 2023(02): 80-88 .
    6. 刘鑫,李飒,尹福顺,姚婷. 基于动态图像技术的南海钙质土颗粒形态特征研究. 岩土工程学报. 2023(03): 590-598 . 本站查看
    7. 邱筱童,尹训强,王桂萱. 考虑不同影响因素的珊瑚岛礁场地地震响应分析. 自然灾害学报. 2023(01): 131-138 .
    8. 尹福顺,李飒,刘鑫. 钙质粗粒料颗粒强度和压缩特性的试验研究. 岩土力学. 2023(04): 1120-1129+1152 .
    9. 李能,吴杨,周福霖,谭平. 岛礁吹填珊瑚砂不排水单调和循环剪切特性试验. 中国公路学报. 2023(08): 152-161 .
    10. 郭桢,蒲建,卢劲锴,黄雨. 南海西沙岛礁非饱和珊瑚砂共振柱-弯曲元试验研究. 工程地质学报. 2023(05): 1552-1562 .
    11. 吴杨,崔杰,李晨,温丽维,单振东,廖静容. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报. 2022(01): 205-216 .
    12. 赵云辉,孟凡超,郑志华. 相对密实度对结构性砂土动剪切模量和阻尼比影响的试验研究. 工程抗震与加固改造. 2022(01): 152-159 .
    13. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    14. 陈龙珠,顾晓强. 共振柱试验确定土动剪切模量和阻尼比的理论辨析. 地基处理. 2022(05): 445-450 .
    15. 王伟,李犇,罗佳乐,胡俊,姜屏,李娜. 动荷载作用历史对水泥固化钙质砂三轴力学特性影响. 自然灾害学报. 2022(05): 158-167 .
    16. 周正龙,丁芷萱,刘杰,赵凯,梁珂,鹿庆蕊. 南海海域饱和粉土动剪切模量和阻尼比试验研究. 土木工程学报. 2022(S1): 227-233 .
    17. 宋前进,程磊,贺为民. 孔隙比对土体动力特性参数的影响——以豫东平原粉土为例. 科学技术与工程. 2021(07): 2830-2835 .
    18. 高盟,彭晓东,陈青生. 南海非饱和钙质砂动力特性三轴试验研究. 北京工业大学学报. 2021(06): 625-635 .
    19. ZHANG Yan-ling,DING Xuan-ming,CHEN Zhi-xiong,WU Qi,WANG Cheng-long. Seismic responses of slopes with different angles in coral sand. Journal of Mountain Science. 2021(09): 2475-2485 .
    20. 郭聚坤,王瑞,尹斌,卞贵建,魏道凯. 钢-钙质砂界面循环剪切特性试验研究. 建筑结构. 2021(S2): 1613-1617 .
    21. 宋前进,程磊,贺为民. 豫东平原粉质黏土动剪切模量与阻尼比试验研究. 地震工程学报. 2020(04): 1013-1018 .
    22. 信鹏飞,李飒,吴文娟. 冲击荷载作用下钙质砂破碎与变形特性研究. 水力发电学报. 2019(12): 102-111 .

    Other cited types(16)

Catalog

    Article views (343) PDF downloads (512) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return