• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
CAI Zheng-yin, HOU Wei. Mechanism of sheet-pile structure with a single anchorage[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 29-34. DOI: 10.11779/CJGE201501002
Citation: CAI Zheng-yin, HOU Wei. Mechanism of sheet-pile structure with a single anchorage[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 29-34. DOI: 10.11779/CJGE201501002

Mechanism of sheet-pile structure with a single anchorage

More Information
  • Received Date: May 19, 2014
  • Published Date: January 19, 2015
  • The sheet-pile structure is extensively used in deep excavations and wharfs as the retaining structure. The key issue is the forces acting on the sheet piles as well as their deformations under the earth pressure. However, the deformations closely relate to the earth pressure. This issue becomes a typical problem of soil-structure interaction. Based on FEM numerical simulations, the working mechanism of the sheet-pile structure is investigated. The following aspects are studied with regard to a wharf case during its excavation: distribution of earth pressures at both sides of the front wall; internal forces and deformation of the structure, stress-strain relationship of foundation soils and rotation of the principal stresses. The results show that accurate modeling of stress-strain relationship of soils is the key to this kind of problem. During the excavation of the harbor basin, the seaward earth pressure of the front wall develops towards the active direction, while the landward one develops towards the passive direction. The excavation induces the rotation of the direction of the principal stress of soils, especially that of the soils under the harbor basin at the seaward side of the front wall.
  • [1]
    SIPMSON B. Rankine lecture: retaining structure: displacement and design[J]. Géotechnique, 1992, 42(4): 541-576.
    [2]
    吴明. 深基坑工程若干力学问题研究[D]. 杭州: 浙江大学, 2009. (WU Ming. Study on some problems of soil mechanics in deep excavation engineering[D]. Hangzhou: Zhejiang University, 2009. (in Chinese))
    [3]
    FANG Y S, CHENG F P, CHEN R C, et al. Earth pressures under general wall movements[J]. Geotechnical Engineering, 1993, 24(2): 113-131.
    [4]
    李海光. 新型支挡结构设计与工程实例[M]. 北京: 人民交通出版社, 2011. (LI Hai-guang. Design and engineering cases of new retaining structures[M]. Beijing: China Communications Press, 2011. (in Chinese))
    [5]
    刘永绣. 板桩和地下墙码头的设计理论和方法[M]. 北京:人民交通出版社, 2006. (LIU Yong-xiu. Design theories and methods for wharfs with sheet piles and diaphragms[M]. Beijing: China Communications Press, 2006. (in Chinese))
    [6]
    司海宝, 蔡正银, 俞缙. 遮帘式板桩码头结构与土共同作用3D数值模拟分析[J]. 土木工程学报, 2012(5): 182-190. (SI Hai-bao, CAI Zheng-yin, YU Jin. 3D numerical modeling of pile-soil interaction for covered sheet-piled whorf[J]. China Civil Engineering Journal, 2012(5): 182-190. (in Chinese))
    [7]
    ZHANG J M, SHAMOTO Y, TOKIMATSU K. Evaluation of earth pressure under any lateral deformation[J]. Soils and Foundations, 1998, 38(1): 15-33.
    [8]
    CHANG M F. Lateral earth pressure behind rotating walls[J]. Canadian Geotechnical Journal, 1997, 34(2): 498-509.
    [9]
    朱百里, 沈珠江. 计算土力学[M]. 上海: 上海科学技术出版社, 1990. (ZHU Bai-li, SHEN Zhu-jiang. Computational soil mechanics[M]. Shanghai: Shanghai Science and Technology Press, 1990. (in Chinese))
    [10]
    郑颖人, 沈珠江, 龚晓南. 广义塑性力学:岩土塑性力学原理[M]. 北京: 中国建筑工业出版社, 2002. (ZHENG Ying-ren, SHEN Zhu-jiang, GOMG Xiao-nan. Generalized plastic mechanics: principles of geotechnical plastic mechanics[M]. Beijing: China Architecture and Building Press, 2002. (in Chinese))
  • Related Articles

    [1]LIANG Hao, LI Dayong, WU Yuqi. Pull-out bearing behavior and failure mode of scaled suction caissons[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1928-1935. DOI: 10.11779/CJGE20230556
    [2]LIU Qi-fei, ZHUANG Hai-yang, CHEN Jia, WU Qi, CHEN Guo-xing. Tests on shear strength and failure mode of rubber particle-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895. DOI: 10.11779/CJGE202110015
    [3]LÜ Bu, YANG Zhi-jun, WEI Xiu-dong, LU Ji-zhong, FU Xu-dong. Failure modes and constitutive model for weak interlayer of dam foundation with different inclination angles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 189-192. DOI: 10.11779/CJGE2019S1048
    [4]ZHENG Gang, GUO Zhi-yi, YANG Xin-yu, ZHOU Hai-zuo, YU Xiao-xuan, ZHAO Jia-peng, XIA Bo-yang. Influences of stiffness of piles on failure modes of embankment of composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 49-52. DOI: 10.11779/CJGE2019S1013
    [5]YANG Bing, SUN Ming-xiang, WANG Run-ming, YANG Tao, FENG Jun, ZHOU De-pei. Shaking table tests on influences of water content of soils on dynamic failure modes and dynamic responses of slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 759-767. DOI: 10.11779/CJGE201804021
    [6]YU Jian-lin, LI Jun-yuan, WANG Chuan-wei, ZHANG Jia-lin, GONG Xiao-nan, CHEN Chang-fu, SONG Er-xiang. Stability of composite foundation improved by rigid piles under embankment considering different failure modes of piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 37-40. DOI: 10.11779/CJGE2017S2010
    [7]FAN Gang, ZHANG Jian-jing, FU Xiao, WANG Zhi-jia, TIAN Hua. Energy identification method for dynamic failure mode of bedding rock slope with soft strata[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 959-966. DOI: 10.11779/CJGE201605024
    [8]SONG Fei, XIE Yong-li, YANG Xiao-hua, ZHANG Lu-yu. Failure mode of geocell flexible retaining wall with surcharge acting on backfill surface[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 152-155.
    [9]LI Xun-chang, MEN Yu-ming, ZHANG Tao, LIU Hong-jia, YAN Jing-ping. Experimental study on failure modes for anti-slide piles with a single anchor[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 803.
    [10]ZHOU Jian, KONG Xiangli, WANG Xiaocun. Bearing capacity behaviours and failure modes of reinforced grounds[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1265-1269.
  • Cited by

    Periodical cited type(21)

    1. 艾楠,宋辰宁,王培森. 地铁运行对邻近建筑振动响应研究. 山东建筑大学学报. 2025(01): 32-40 .
    2. 杨超,朱硕,董文韬. 基于Citespace的城市轨道交通安全研究热点与前沿可视化分析. 交通与运输. 2025(01): 82-87 .
    3. 周腾飞. 地铁列车运行引起邻近建筑物振动响应研究. 四川水泥. 2025(02): 26-28 .
    4. 吴思豫,戚承志,卢春生,李太行,姜凯松,龙渊腾. 地铁运行对古城墙的振动影响. 工程建设与设计. 2025(03): 73-77 .
    5. 王凯,富志强,杨春波,王俊伟. 黄土地层公路隧道运营期下穿古长城动力响应研究. 公路. 2024(04): 416-421 .
    6. 张军. 深埋地铁隧道对临近桥梁桩基的扰动分析. 工程技术研究. 2024(07): 20-23+34 .
    7. 万颖君,金鑫,马光辉,张振宇,翟洪刚,汤方程,孙苗苗. 软土地区施工现场重载车辆对基坑周围环境振动实测分析. 华南地震. 2024(02): 128-135 .
    8. 花雨萌,谢伟平,陈斌. 地铁振动对建筑物竖向楼层响应的影响研究. 建筑结构学报. 2023(03): 122-129 .
    9. 邹超,冯青松,何卫. 列车运行引起地铁车辆段与上盖建筑环境振动研究综述. 交通运输工程学报. 2023(01): 27-46 .
    10. 孙志浩,李明睿,冯国辉,徐长节,黄展军,侯世磊,何小辉. 交通荷载下叠合式公轨隧道的力学性状研究. 铁道科学与工程学报. 2023(06): 2210-2221 .
    11. 贾宝新,周志扬,苑文雅,张晶. 基于等效质点峰值振动速度的高铁线路周边建筑结构振动评价研究. 岩土力学. 2023(09): 2696-2706 .
    12. 路德春,高泽军,孔凡超,马一丁,沈晨鹏,杜修力. 地铁列车运行诱发地面邻近建筑振动的数值模拟研究. 土木与环境工程学报(中英文). 2023(06): 113-124 .
    13. 肖迪,段旭,刘武超,邹愈,董琪,叶万军. 地铁振动作用下上部正交综合管廊动力响应试验研究. 防灾减灾工程学报. 2023(05): 1151-1159 .
    14. 王韵超,王思崎,郑茗旺,郑凌逶,谢新宇. 弹簧浮置板减振措施对地铁下穿不同结构建筑物振动影响实测及分析. 低温建筑技术. 2021(03): 51-54+59 .
    15. 谭佳,许炜萍,赵楚轩,王呼佳,杨朋,孙克国. 地铁过渡段结构振动响应特性与噪声分析. 城市轨道交通研究. 2021(05): 37-41+46 .
    16. 袁庆利. 运营期地铁列车振动下软黏土的动力响应及变形研究. 国防交通工程与技术. 2021(04): 25-30 .
    17. 汪益敏,刘品言,陶子渝,陈皓粤,周杰. 地铁车辆段直线电机列车车致振动的试验研究. 铁道科学与工程学报. 2021(09): 2436-2443 .
    18. 夏志强,凌可胜,董克胜,徐小扣,沈威,方火浪. 地铁列车曲线运行引起学校建筑物振动响应分析. 地震工程学报. 2021(06): 1377-1386 .
    19. 程保青,郭婧怡,蒋浩杰. 地铁车辆段咽喉区上盖建筑振动影响. 应用声学. 2021(06): 911-917 .
    20. 郑国琛,许航莉,祁皑,郭金龙. 地铁及地面交通环境振动实测与数值模拟研究. 中国环境科学. 2020(09): 4146-4154 .
    21. 孟坤,崔春义,许民泽,王启福,苏健. 地铁运行引起的临近桥梁结构振动分析. 深圳大学学报(理工版). 2020(06): 610-616 .

    Other cited types(18)

Catalog

    Article views (384) PDF downloads (501) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return