• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YING Hong-wei, SUN Wei, LÜ Meng-jun, CHEN Dong. Measured characteristics of a deep soft soil excavation in complex environment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 424-430. DOI: 10.11779/CJGE2014S2074
Citation: YING Hong-wei, SUN Wei, LÜ Meng-jun, CHEN Dong. Measured characteristics of a deep soft soil excavation in complex environment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 424-430. DOI: 10.11779/CJGE2014S2074

Measured characteristics of a deep soft soil excavation in complex environment

More Information
  • Received Date: July 27, 2014
  • Published Date: July 27, 2014
  • The monitoring data of a 17.4 m~19.8 m-deep multi-strutted soft clay excavation built on hard shell layer soft soil foundation in Hangzhou is analyzed. The deep excavation is supported by a concrete diaphragm wall and multi-storey reinforced concrete brace. The monitoring includes soil and wall deflections, surface and subsurface ground settlements, axial forces of concrete struts. This study shows that the maximum horizontal displacements are 0.24%Hm~0.75%Hm, in which Hm is the total excavation depth. The maximum horizontal displacement is larger than 100 mm, in which the proportions of creep deformation reach up to 44%~56%. The horizontal creep rates are in 0.15~0.76 mm/d and closely related with the excavation depth and the properties of the soils near the base. The technology of T-diaphragm wall and partition wall can reduce the horizontal displacement of the excavation to some extent. The distribution of the lateral settlement is in a parabolic shape and the longitudinal settlement is in a saddle shape. The maximum settlements are 0.26%Hm ~0.7%Hm and the settlement rates are 0.1~0.6 mm/d. The relationship between the maximum settlements is between and 2.57, in which is the maximum horizontal displacement. The axial forces of the struts change dynamically during the excavation and construction or removal of the adjacent braces.
  • [1]
    PECK R B. Deep excavation & tunneling in soft ground[C]// Proc 7th International Conference on Soil Mechanics and Foundation Engineering. Mexiocity, 1969: 225-281.
    [2]
    MANA A I, CLOUGH G W. Prediction of movements for braced cuts in clay[J]. Journal of Geotechnical Engineering Division, ASCE, 1981, 107(6): 759-777.
    [3]
    OU C Y, LIAO J T, LIN H D. Performance of diaphragm wall constructed using the top-down method[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(9): 798-808.
    [4]
    LONG M. Database for retaining wall and ground movements due to deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(3): 203-224.
    [5]
    LIU G B, NG C W W, WANG Z W. Observed performance of a deep multi-strutted excavation in Shanghai soft clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(8): 1004-1013.
    [6]
    WANG J H, XU Z H, WANG W D. Wall and ground movements due to deep excavations in Shanghai soft soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(7): 985-995.
    [7]
    应宏伟, 谢康和, 潘秋元, 等. 软黏土深基坑开挖时间效应的有限元分析[J].计算力学学报, 2000, 17(3): 349-354. (YING Hong-wei, XIE Kang-he, PAN Qiu-yuan, et al. FEM analysis on time-effects of deep excavations in soft clay[J]. Chinese Journal of Computational Mechanics, 2000, 17(3): 349-354. (in Chinese))
    [8]
    OU C Y, LAI C H. Finite-element analysis of deep excavation in layered sandy and clayey soil deposits[J]. Can. Geotech. J, 1994, 31(2): 204-214.
    [9]
    应宏伟, 杨永文, 胡安峰, 等. 软土某深基坑开挖的实测性状和环境效应分析[J]. 土木工程学报, 2011, 44(增刊): 90-93. (YING Hong-wei, YANG Yong-wen,HU An-feng,et al. Analysis on observed performance and environmental effect of a deep excavation in soft clay[J]. China Civil Engineering Journal, 2011, 44(增刊): 90-93. (in Chinese)).
    [10]
    MOORMAN C. Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database[J]. Soils and Foundation, 2004, 44(1): 87-98.
    [11]
    OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767.
  • Cited by

    Periodical cited type(12)

    1. 苗胜军,余文轩,梁明纯,杨鹏锦,李从豪,刘泽京. 岩石各向异性波速三维全方位表征方法与声发射定位优化. 工程科学学报. 2025(03): 454-467 .
    2. 徐荣超,王怡博,张圣哲,孟凡震,李震,高梁,阎震. 轴向及环向变形加载控制方式对花岗岩力学及声发射特性影响的试验研究. 工程地质学报. 2025(01): 123-134 .
    3. 张翼飞,朱明礼,张红成,陈嘉,李起航,雷彬彬. 轴向静载压缩作用下深部砂岩的变形破坏规律. 有色金属工程. 2024(06): 116-124 .
    4. 龚耕,潘佳,赵立春,熊峰,张国华,唐志成. 基于压敏胶片的法向应力作用下砂岩节理的接触特征研究. 岩土力学. 2024(10): 2907-2918+2928 .
    5. 刘葳,杨有贞,刘美汐,马慧,马文国,张刚. 冻融条件下贺兰口岩石损伤声发射特征研究. 西北工程技术学报. 2024(03): 243-251 .
    6. 张村,王潇杰,师旭涛,赵毅鑫,韩鹏华,张通. 含水饱和度影响下砂岩劈裂特性与水岩作用机制. 岩石力学与工程学报. 2024(S2): 3722-3737 .
    7. 胡玉波,房敬年,徐荣超,郝小红,阎震,周文朋,李震. 饱水作用对白砂岩损伤破裂及声发射特性的影响. 长江科学院院报. 2024(11): 163-171 .
    8. 李盛南,肖俊,李玉,刘新喜,梁桥,常锦,刘杰. 基于细观裂纹扩展演化的岩石损伤本构模型研究. 岩石力学与工程学报. 2023(03): 640-648 .
    9. 刘洋甫,刘思孟,陈坤,陈强,蒲于立,谈俊杰. 拉/压状态下混凝土声发射信号参数特征试验研究. 混凝土. 2023(02): 10-14 .
    10. 朱俊,邓建辉,陈菲,黄弈茗. 压缩荷载下饱和硬岩软化特性与机制研究. 岩土工程学报. 2023(04): 768-776 . 本站查看
    11. 杨江坤,宋彦琦,马宏发,郑俊杰,杨俊涛,鲍伟. 岩石单轴声发射及能量耗散特征颗粒流模拟研究. 矿业研究与开发. 2023(04): 88-94 .
    12. 齐庆新,李海涛,郑伟钰,杜伟升,杨冠宇,李晓鹏. 煤岩弹性变形能的表征物理模型及实测方法. 煤炭科学技术. 2022(01): 70-77 .

    Other cited types(10)

Catalog

    Article views (292) PDF downloads (244) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return