• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053
Citation: HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053

Numerical simulation analysis of dewatering and recharge process of deep foundation pits

More Information
  • Received Date: July 27, 2014
  • Published Date: July 27, 2014
  • Part of the ultra-deep foundation pits have debunked confined aquifer in Wuhan area, and thegroundwater is bound to affect the excavation. So the groundwater should be effectively controlled. Taking the dewatering of deep foundation pit of Integrated Services Building of Wuhan Women and Children Health Care Center as an example the dewatering and recharge process are simulated by using Visual Modflow. The feasibility and accuracy of simulations are analyzed, and the effcienly of different recharge methods and the impact of recharge on changes in water level and ground settlement outside the deep foundation pit are studied. The results show that the recharge plays a significant role in improving water outside the deep foundation pit, and the greater the amount of recharge, the more the water level recovery. The settlement outside the deep foundation pit can be reduced by recharge, and the more the recharge amount, the more the controlled settlement.
  • [1]
    俞建霖, 龚晓南. 基坑工程地下水回灌系统的设计与应用技术研究[J]. 建筑结构学报, 2001, 22(5): 70-74. (YU Jian-lin, GONG Xiao-nan. Design and applied technology groundwater recharge systems excavation engineering[J]. Journal of Building Structures, 2001, 22(5): 70-74. (in Chinese))
    [2]
    张瑛颖, 龚晓南. 基坑降水过程中回灌的数值模拟[J]. 水力水电技术, 2007, 38(4): 48-50. (ZHANG Ying, GONG Xiao-nan. Numerical simulation of re-charging during dewatering of foundation pit[J]. Hydraulic and hydropower Technology, 2007, 38(4): 48-50. (in Chinese))
    [3]
    刘 毅, 瞿成松, 等. Modflow 在上海淮海中路3号地块基坑降水中的应用[J]. 施工技术, 2011(增刊): 137-140. (LIU Yi, QU Cheng-song, et al. Application of modflow in NO.3 block central Huaihai road foundation excavation dewatering in Shanghai[J]. Construction Technology, 2011(S0): 137-140. (in Chinese))
    [4]
    刘国彬, 王卫东. 基坑工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2011. (LIU Guo-bin, WANG Wei-dong. Excavation engineering manual[M]. 2nd ed. Beijing: China Architecture and Building Press, 2011. (in Chinese))
  • Related Articles

    [1]Thermal conductivity evolution of sand-clay mixtures under one-dimensional compression[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240309
    [2]WANG Wei-guang, YAO Zhi-hua, LI Wan, ZHANG Jian-hua. Compression characteristics and particle crushing behavior of coral sand–quartz sand mixture under confined high pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002
    [3]SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
    [4]WU Zheng-guang, ZHANG Hua. Experimental study on entrapped air content in quasi-saturated soil subjected to steady ponded water infiltration[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 274-279.
    [5]XU Jin, CAI Zheng-yin, WANG Xu-dong. Semi-analytical numerical analysis for plane strain consolidation of anisotropic soil with compressible constituents[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 89-93.
    [6]ZHU Chunpeng, LIU Hanlong, ZHANG Xiaolu. Laboratory tests on compression characteristics of soil polluted by acid and alkali[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1477-1483.
    [7]GAO Yanbin, ZHU Hehua, YE Guanbao, XU Chao. The investigation of the coefficient of secondary compression Ca in od ometer tests[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 459-463.
    [8]ZHANG Yiping, YU Yanan, ZHANG Tuqiao, ZHANG Xiaohai. A method for evaluating coefficient of consolidation[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 616-618.
  • Cited by

    Periodical cited type(12)

    1. 苟富刚,龚绪龙. 海相软土无侧限抗压强度曲线类型分类及影响因素. 工程地质学报. 2025(01): 20-28 .
    2. 丁发兴,吴霞,张学民,陈雷,葛敬冉,肖杨,宫凤强,陈靖,李梓焜,刘增飞,崔昊,张训杰,吕飞. 材料强度理论研究进展述评. 铁道科学与工程学报. 2024(11): 4555-4587 .
    3. 孟天一,张玉,刘瑾,赵阳,杨倩,丁潇,范特佳. 平面应变条件下基于Lade-Duncan强度准则中主应力条件的土压力及其适用性. 土木与环境工程学报(中英文). 2022(01): 20-27 .
    4. 许萍,邵生俊,房凌云,孙志军. 基于空间面变化的横观各向同性破坏准则研究. 岩土工程学报. 2022(06): 1036-1043 . 本站查看
    5. 许萍,孙志军,邵生俊. 基于空间面变化的各向异性强度变化规律研究. 岩土工程学报. 2021(06): 1118-1124 . 本站查看
    6. 路德春,韩佳月,梁靖宇,田雨,杜修力. 横观各向同性黏土的非正交弹塑性本构模型. 岩石力学与工程学报. 2020(04): 793-803 .
    7. 万征,孟达. 基于t准则的各向异性强度准则及变换应力法. 力学学报. 2020(05): 1519-1537 .
    8. 万征,宋琛琛,孟达. 一种非线性强度准则及转换应力法. 力学学报. 2019(04): 1210-1222 .
    9. 李成. 基于MNLD准则平面应变条件下土体的强度特性描述. 铁道科学与工程学报. 2019(08): 1955-1960 .
    10. 万征,孟达,宋琛琛. 一种适用于岩土的扩展强度及屈服准则. 力学学报. 2019(05): 1545-1556 .
    11. 路德春,张君鸿,梁靖宇,杜修力. 基于特征滑动面的横观各向同性土强度特性研究. 岩土工程学报. 2019(11): 2000-2008 . 本站查看
    12. 万征,宋琛琛,赵晓光. 一种横观各向同性强度准则及变换应力空间. 力学学报. 2018(05): 1168-1184 .

    Other cited types(6)

Catalog

    Article views (359) PDF downloads (483) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return