• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LÜ Wei-hua, MIAO Lin-chang, LIU Cheng, WANG Man. Quantitative evaluation of load effects of pile-net composite foundation based on systems analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2291-2299. DOI: 10.11779/CJGE201412018
Citation: LÜ Wei-hua, MIAO Lin-chang, LIU Cheng, WANG Man. Quantitative evaluation of load effects of pile-net composite foundation based on systems analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2291-2299. DOI: 10.11779/CJGE201412018

Quantitative evaluation of load effects of pile-net composite foundation based on systems analysis

More Information
  • Received Date: April 21, 2014
  • Published Date: December 25, 2014
  • In the current design of geosynthetic and pile supported (GSP) composite foundation, a pre-assumed soil arch height is always utilized in load sharing calculation, and the contribution of subsoil resistance is weakened in supporting the embankment fill. To improve the above two defects, the soil arching effect and the geomembrane effect are analyzed, and then the quantitative evaluation methods are presented. In the derivation, the pile-soil differential settlements at pile top and toe are considered, and the arch height can be calculated according to the relative pile-soil displacement. Simultaneously, the neutral point is adopted in skin friction analysis, and hence a formula for the load distribution is obtained based on the mobilized shearing stress developing from bottom to top. This method can take good care of the interaction between the embankment fill, pile-reinforced area and lower underlying layer, which can consider the penetration of pile tops, interaction between piles and surrounding soil and penetration of pile ends. According to the continuity condition of stress and displacement, a load effect solution of GSP composite foundation is obtained. The present method is validated to be reasonable by comparing the analytical solutions with the FEM results and the monitoring data, and can be adopted by engineers when it comes to the situation in presence of the bearing stratum at pile tip with certain stiffness.
  • [1]
    郑 刚, 龚晓南, 谢永利, 等. 地基处理技术发展综述[J]. 土木工程学报, 2012, 45(2): 127-146. (ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al. State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146. (in Chinese))
    [2]
    TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap door[C]// Proceeding of the First International Congress on Soil Mechanics and Foundation Engineering. Cambridge, 1936: 307-311.
    [3]
    MCNULTY J W. An experimental study of arching sand[R]. Vicksburg: Technical Report No. I-674, U.S. Army Engineer Waterways Experiment Station, Corp of Engineers, Mississippi, 1965.
    [4]
    EVANS C H. An examination of arching in granular soils[D]. Cambridge: Massachusetts Institute of Technology, 1984.
    [5]
    GUIDO V A, KNEUPPEL J D, SWEENY M A. Plate loading tests on geogrid-reinforced earth slabs[C]// Proceedings of the Geosynthetics’87. New Orleans, 1987: 216-225.
    [6]
    HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Engineering, 1988, 21(3): 12-18.
    [7]
    LOW B K, TANG S K, CHOA V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938.
    [8]
    British Standard BS 8006. Code of practice for strengthened/reinforced soils and other fills[S]. London: British Standard Institution, 1995.
    [9]
    KEMPFERT H G, GOBEL C, ALEXIEW D, et al. German recommendations for reinforced embankments on pile-similar elements[S]. EuroGeo3-Third European Geosynthetics Conference, Geotechnical Engineering with Geosynthetics, 2004: 279-284.
    [10]
    陈云敏, 贾 宁, 陈仁朋. 桩承式路堤土拱效应分析[J]. 中国公路学报, 2004, 17(4): 1-6. (CHEN Yun-min, JIA Ning, CHEN Ren-peng. Soil arch analysis of pile-supported embankments[J]. China Journal of Highway and Transport, 2004, 17(4): 1-6. (in Chinese))
    [11]
    ABUSHARAR S W, ZHENG J J, CHEN B G, YIN J H. A simplified method for analysis of a piled embankment reinforced with geosynthetics[J]. Geotextiles and Geomembranes, 2009, 27(1): 39-52.
    [12]
    VILLARD P, GOURC J P, GIRAUD H. A geosynthetic reinforcement solution to prevent the formation of localized sinkholes[J]. Canadian Geotechnical Journal, 2000, 37(5): 987-999.
    [13]
    NAUGHTON P J. The significance of critical height in the design of piled embankments[C]// Proceeding of Geo-Denver 2007, New Peaks in Geotechnics, ASCE GSP 172. Denver, 2007.
    [14]
    王 非, 缪林昌. 落水洞上覆路堤土工加筋设计新方法[J]. 东南大学学报(自然科学版), 2009, 39(6): 1217-1221. (WANG Fei, MIAO Lin-chang. New design method of geosynthetic-reinforced embankment over sinkholes[J]. Journal of Southeast University(Natural Science Edition), 2009, 39(6): 1217-1221. (in Chinese))
    [15]
    刘吉福. 路堤下复合地基桩、土应力比分析[J]. 岩石力学与工程学报, 2003, 22(4): 674-677. (LIU Ji-fu. Analysis on pile-soil stress ratio for composite ground embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 674-677. (in Chinese))
    [16]
    折学森. 软土地基沉降计算[M]. 北京: 人民交通出版社, 1998. (ZHE Xue-sen. Settlement calculation of soft foundation[M]. Beijing: China Communications Press, 1998. (in Chinese))
    [17]
    董必昌, 郑俊杰. CFG 桩复合地基沉降计算方法研究[J]. 岩石力学与工程学报, 2002, 21(7): 1084-1086. (DONG Bi-chang, ZHENG Jun-jie. Study on the settlement calculation of CFG pile composite ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 1084-1086. (in Chinese))
    [18]
    施建勇, 邹 坚. 深层搅拌桩复合地基沉降计算理论研究[J]. 岩土力学, 2002, 23(3): 309-320. (SHI Jian-yong, ZOU Jian. Study on calculation theory of settlement of composite ground reinforced by deep-mixing pile group[J]. Rock and Soil Mechanics, 2002, 23(3): 309-320. (in Chinese))
    [19]
    雷金波. 带帽控沉疏桩复合地基试验研究及作用机理分析[D]. 南京: 河海大学, 2005. (LEI Jin-bo. Experiment study and working mechanism analysis of composite foundation with capped sparse piles to control settlement[D]. Nanjing: Hohai University, 2005. (in Chinese))
    [20]
    曹卫平, 陈云敏, 陈仁朋. 考虑路堤填筑过程与地基土固结相耦合的桩承式路堤土拱效应分析[J]. 岩石力学与工程学报, 2008, 27(8): 1610-1617. (CAO Wei-ping, CHEN Yun-min, CHEN Ren-peng. Analysis of soil arching in piled embankments considering coupled effect of embankment filling and soil consolidation[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1610-1617. (in Chinese))
    [21]
    赵明华, 何腊平, 张 玲. 基于荷载传递法的CFG桩复合地基沉降计算[J]. 岩土力学, 2010, 31(3): 839-844. (ZHAO Ming-hua, HE La-ping, ZHANG Ling. Settlement calculation of CFG pile composite foundation based on load transfer method[J]. Rock and Soil Mechanics, 2010, 31(3): 839-844. (in Chinese))
    [22]
    饶卫国, 赵成刚. 桩-网复合地基应力比分析与计算[J]. 土木工程学报, 2002, 35(2): 74-80. (RAO Wei-guo, ZHAO Cheng-gang. The behavior of pile-net composite foundation[J]. China Civil Engineering Journal, 2002, 35(2): 74-80. (in Chinese))
    [23]
    郑俊杰, 陈宝国, ABUSHARAR S W. 双向增强体复合地基桩土应力比分析[J]. 华中科技大学学报(自然科学版), 2007, 35(7): 110-113. (ZHENG Jun-jie, CHEN Bao-guo, ABUSHARAR S W. Pile-soil stress ratio of two directed reinforcement composite foundations[J]. Journal of Huazhong University of Science & Technology(Natural Science Edition), 2007, 35(7): 110-113. (in Chinese))
    [24]
    张 军, 郑俊杰, 马 强. 路堤荷载下双向增强体复合地基受力机理分析[J]. 岩土工程学报, 2010, 32(9): 1392-1398. (ZHANG Jun, ZHEN Jun-jie, MA Qiang. Mechanical performance of biaxial reinforcement composite foundation under embankment loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1392-1398. (in Chinese))
    [25]
    陈昌富, 周志军. 双向增强体复合地基桩土应力比分析[J]. 岩土力学, 2009, 30(9): 2660-2666. (CHEN Chang-fu, ZHOU Zhi-jun. Analysis of pile-soil stress ratio for double reinforced composite ground[J]. Rock and Soil Mechanics, 2009, 30(9): 2660-2666. (in Chinese))
    [26]
    吕伟华, 缪林昌, 王 非. 基于不完全土拱效应的土工格栅加固机制与设计方法[J]. 岩石力学与工程学报, 2012, 31(3): 632-639. (LÜ Wei-hua, MIAO Ling-chang, WANG Fei. Mechanism of geosynthetic reinforcement based on partially developed soil arch effect and design method[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 632-639. (in Chinese))
    [27]
    RANDOLPH M F, WROTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of Geotechnical Engineering, 1978, 104(12): 1465-1488.
    [28]
    陈仁朋, 贾 宁, 陈云敏. 桩承式加筋路堤受力机理及沉降分析[J]. 岩石力学与工程学报, 2005, 24(23): 4358-4367. (CHEN Ren-peng, JIA Ning, CHEN Yun-min. Mechanism and settlement analysis of pile-supported and geogrid-reinforced embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4358-4367. (in Chinese))
  • Related Articles

    [1]LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005
    [2]SHENG Dai-chao, YANG Chao. Discussion of fundamental principles in unsaturated soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 438-470.
    [3]HUANG Mao-song, LIU Yan-hua. Simulation of yield characteristics and principal stress rotation effects of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1667-1675.
    [4]Establishing soil constitutive model based on coupling stress[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1922-1929.
    [5]XIAO Yang, DENG An. Stress-strain analyses of sand-EPS lightweight-bead fills based on elliptic-parabolic yield surfaces model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1467-1471.
    [6]DAI Zihang, ZHOU Ruizhong, LU Caijin. Discussions on yield criterions and stress paths of soils in tests and numerical analyses[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 968-976.
    [7]CAO Yuchun, CHEN Yunmin, HUANG Maosong. One-dimensional nonlinear consolidation analysis of structured natural soft clay subjected to arbitrarily time-dependent construction loading[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 569-574.
    [8]JIANG Yongdong, XIAN Xuefu, XIONG Deguo, ZHOU Fuchun. Study on creep behaviour of sandstone and its mechanical models[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1478-1481.
    [9]JIANG Zhenquan, JI Liangjun. The laboratory study on behavior of permeability of rock along the complete stress-strain path[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 153-156.
    [10]Shen Zhu-jiang. The Rational Form of Stress-Strain Relationship of Soils Based on Elasto-Plasticity Theory[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(2): 11-19.
  • Cited by

    Periodical cited type(27)

    1. 李明昊,李皋,张毅,杨旭,李红涛,冯佳歆,宿腾跃. 位移约束和温度耦合下致密砂岩热诱导微裂纹发育规律研究. 岩石力学与工程学报. 2025(01): 174-184 .
    2. 黄彦华,张坤博,杨圣奇,田文岭,朱振南,印昊,李明旭. 高温后花岗岩微观特征及其对强度影响规律研究. 岩石力学与工程学报. 2025(02): 359-372 .
    3. Wendong Yang,Xiang Zhang,Bingqi Wang,Jun Yao,Pathegama G.Ranjith. Experimental study on the physical and mechanical properties of carbonatite rocks under high confining pressure after thermal treatment. Deep Underground Science and Engineering. 2025(01): 105-118 .
    4. 解经宇,宋继伟,隋建才,赵萌,王韧,曾翀,王建龙. 我国干热花岗岩在不同冷却条件下的力学响应研究进展. 煤田地质与勘探. 2025(03): 126-142 .
    5. 李明耀,李绍金,彭磊,丁宇飞,左建平. 基于相场法的花岗岩弹塑性损伤模型及其细观力学行为研究. 岩石力学与工程学报. 2024(03): 611-622 .
    6. 黄彦华,陶然,韩媛媛,陈笑,罗一鸣,武世岩. 温度对不同孔隙砂岩Ⅰ型断裂韧度影响的试验研究. 采矿与安全工程学报. 2024(02): 430-436 .
    7. 于洪丹,卢琛,陈卫忠,黄嘉玮,李洪辉. 塔木素黏土岩蠕变特性试验与理论研究. 岩石力学与工程学报. 2024(S1): 3578-3585 .
    8. 杨文东,王柄淇,姚军,井文君,张祥. 三轴压缩下实时高温和热处理后碳酸盐岩力学特性的试验研究. 岩石力学与工程学报. 2024(06): 1347-1358 .
    9. 闫程锦,郤保平. 基于颗粒流GBM模型的花岗岩热力损伤特性研究. 水利水电技术(中英文). 2024(05): 170-180 .
    10. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 持续高温作用下花岗岩特征应力及声发射特征试验研究. 岩石力学与工程学报. 2024(07): 1580-1592 .
    11. 贾蓬,钱一锦,毛松泽,徐雪桐,卢佳亮. 晶粒尺寸对花岗岩动态劈裂力学特性及断面粗糙度影响的试验研究. 应用基础与工程科学学报. 2024(05): 1449-1462 .
    12. 夏开宗,刘夏临,林英书,张飞,司志伟,孙朝燚. 基于岩体波速的地下洞室围岩损伤区岩体力学参数取值方法及工程应用. 岩石力学与工程学报. 2024(10): 2414-2429 .
    13. 黄麟淇,刘茂林,王钊炜,郭懿德,司雪峰,李夕兵,李超. 温度影响和真三轴加载下深部圆形隧洞破坏研究(英文). Journal of Central South University. 2024(09): 3119-3141 .
    14. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 热损伤花岗岩能量演化机制及损伤本构模型. 金属矿山. 2024(11): 45-54 .
    15. 黄彦华,陶然,陈笑,罗一鸣,韩媛媛. 高温后花岗岩断裂特性及热裂纹演化规律研究. 岩土工程学报. 2023(04): 739-747 . 本站查看
    16. 张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 .
    17. 李卫,苏海健,蔚立元,刘日成,陈广印. 高温热处理砂岩Ⅰ-Ⅲ混合断裂特性试验研究. 采矿与安全工程学报. 2023(06): 1281-1289 .
    18. 顾冬,马力,罗坤,孙云儒. 水利枢纽工程场地基岩高温三轴压缩渗透力学试验研究. 水利科技与经济. 2022(02): 74-78 .
    19. 张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 .
    20. 李博宇,彭文祥,王李昌,隆威. 温度与化学作用下岩石物理力学性质研究进展. 地质装备. 2022(02): 33-37 .
    21. 刘磊,李睿,秦浩,刘洋. 高温后深部矽卡岩动力学特性及微观破坏机制研究. 岩土工程学报. 2022(06): 1166-1174 . 本站查看
    22. 詹懿德,汪发祥,佘恬钰,沈佳轶,吕庆. 考虑围压效应的块状节理岩体变形破坏数值模拟. 水利水运工程学报. 2022(04): 70-76 .
    23. 李明耀,彭磊,左建平,王智敏,李绍金,薛喜仁. 基于DIP-FFT数值方法的花岗岩多尺度力学特性研究. 岩石力学与工程学报. 2022(11): 2254-2267 .
    24. 王春,熊宏威,舒荣华,薛文越,胡慢谷,张攀龙,雷彬彬. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征. 中国有色金属学报. 2022(09): 2801-2818 .
    25. 梁忠豪,秦楠,孙嘉彬,葛强. 高温作用后黄砂岩三轴压缩及细观破裂机制. 科学技术与工程. 2021(24): 10430-10439 .
    26. 郝宪杰,刘继山,魏英楠,陈泽宇,靳多祥,潘光耀,张谦. 2000m超深煤系储层力学及声发射特征的围压效应. 中南大学学报(自然科学版). 2021(08): 2611-2621 .
    27. 徐文龙,徐鼎平,柳秀洋. 高温热损伤对花岗岩单轴破坏模式和强度的影响研究. 皖西学院学报. 2021(05): 94-99 .

    Other cited types(31)

Catalog

    Article views PDF downloads Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return