• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Shu-wei, XIA Cai-chu, ZHANG Ping-yang, ZHOU Yu. Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2025-2035. DOI: 10.11779/CJGE201411008
Citation: ZHOU Shu-wei, XIA Cai-chu, ZHANG Ping-yang, ZHOU Yu. Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2025-2035. DOI: 10.11779/CJGE201411008

Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern

More Information
  • Received Date: November 17, 2013
  • Published Date: November 19, 2014
  • As the stress induced by varying temperature and air pressure is important for the stability and durability of underground compressed air energy storage in lined rock caverns, an analytical approach for the induced stress is proposed. The cavern with a sealing layer, concrete lining and host rock is considered, the governing equations for temperature and air pressure of the cavern are established. The temperature field and air pressure during the operation period are obtained using the Laplace transform and the principle of superposition. Then the induced stress variations are determined analytically by employing a thermo-elastic model. The stress induced during a typical operation cycle is illustrated. The approach is subsequently verified by a coupled compressed-air and thermo-mechanical numerical simulation and by a previous study for temperature. Finally, the influence of temperature on the total stress and the impact of heat transfer coefficient are discussed. The results reveal that the caused tensile hoop stresses in the sealing layer and concrete lining are quite large. Moreover, the temperature has a non-negligible effect on the lined cavern for underground compressed air storage, while the hoop and longitudinal stresses are affected by the temperature to a larger extent than the radial stress. In addition, the heat transfer coefficient affects the cavern stress to a high degree.
  • [1]
    RAJU M, KHAITAN S K. Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant[J]. Applied Energy, 2012, 89: 474-481.
    [2]
    KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review[J]. Rev Chem Eng, 2012, 28: 123-148.
    [3]
    李仲奎, 马芳平, 刘 辉. 压气蓄能电站的地下工程问题及应用前景[J]. 岩石力学与工程学报, 2003, 22(增刊1): 2121-2126. (LI Zhong-kui, MA Fang-ping, LIU Hui. Underground engineering problems in compressed air energy storage and its developing future[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S1): 2121-2126. (in Chinese))
    [4]
    CROTOGINO F, MOHMEYER K U, SCHARF R. Huntorf CAES: more than 20 years of successful operation[C]// Spring 2001 meeting. Orlando, 2001.
    [5]
    HAYASHI M. Rock mechanics of compressed air energy storage and super magnetic energy storage in Japan [C]// Rock Mechanics in Japan. Tokyo: Japanese Committee for ISRM, 1991.
    [6]
    SUCCAR S, WILLIAMS R H. Compressed air energy storage: theory, resources, and applications for wind power[R]. Princeton: Princeton Environmental Institute, Princeton University, 2008.
    [7]
    ALLEN R D, DOHERTY T J, FOSSUM A F. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns[R]. Springfield: Pacific Northwest Laboratory, 1982.
    [8]
    LINDBLOM U E. Design criteria for the Brooklyn Union gas storage cavern at JFK Airport[J]. Int J Rock Mech & Min Sci, 1997, 34(3/4): 179.
    [9]
    ISHIHATA T. Underground compressed air storage facility for CAES-G/T power plant utilizing an airtight lining[J]. Int Soc Rock Mech, 1997, 5(1): 17-21.
    [10]
    KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Appl Energy, 2012, 92: 653-667.
    [11]
    KIM H M, RUTQVIST J, CHOI B H. Feasibility analysis of underground compressed air energy storage in lined rock caverns using the TOUGH-FLAC simulator[C]// TOUGH Symposium 2012. Berkeley: Lawrence Berkeley National Laboratory, 2012.
    [12]
    SONG W K, RYU D W. Stability analysis of concrete plugs in a pilot cavern for compressed air energy storage[C]// Harmonising Rock Engineering and the Environment. London: Taylor & Francis Group, 2012.
    [13]
    KIM H M, RUTQVIST J, JEONG J H, et al. Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage[J]. Rock Mech Rock Eng, 2012, 4: 312-323.
    [14]
    JOHANSSON J. High pressure storage of gas in lined rock caverns: cavern wall design principles[D]. Stockholm: Royal Institute of Technology, 2003.
    [15]
    RUTQVIST J, KIM H M, RYU D W, et al. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[J]. Int J Rock Mech & Min Sci 52: 71-81.
    [16]
    KUSHNIR R, DAYAN A, ULLMANN A. Temperature and pressure variations within compressed air energy storage caverns[J]. Int J Heat & Mass Transf, 2012, 55(21/22): 5616-5630.
    [17]
    陈剑文, 蒋卫东, 杨春和, 等. 储气库注、采气过程热工分析研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 2887-2894. (CHEN Jian-wen, JIANG Wei-dong, YANG Chun-he, et al. Study on engineering thermal analysis of gas storage in slat formation during gas injection and production[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 288-2894. (in Chinese))
    [18]
    BARBUTO F A D A. Performance of numerical inversion of Laplace transforms[J]. Adv Eng Software 1991, 13(3): 148-155.
    [19]
    刘利强. 拉普拉斯反变换的一种数值算法[J]. 内蒙古工业大学学报, 2002, 21(1): 47-49. (LIU Li-qiang. An algorithm for numerical inversion of Laplace transforms[J]. Journal of Inner Mongolia Polytechnic University, 2002, 21(1): 4-43. (in Chinese))
    [20]
    徐芝纶. 弹性力学[M]. 4版. 北京: 高等教育出版社, 2006. (XU Zhi-lun. Elasticity[M]. 4th ed. Beijing: Higher Education Press, 2006. (in Chinese))
    [21]
    张家荣, 赵廷元. 工程常用物质的热物理性质手册[M]. 北京: 新时代出版社, 1987. (ZHANG Jia-rong, ZHAO Ting-yuan. A handbook for the thermo-physical properties of engineering materials[M]. Beijing: New Era Press, 1987. (in Chinese))
    [22]
    王志魁. 化工原理[M]. 3版. 北京: 化学工业出版社, 2005. (WANG Zhi-kui. Principles of chemical engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2005. (in Chinese))
    [23]
    KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic models for the temperature and pressure variations within adiabatic caverns of compressed air energy storage plants[J/OL]. [2013-05-14]. doi: 10.1155/2013/603130.
  • Cited by

    Periodical cited type(11)

    1. 李淑娥,陈志明,徐永福,徐宇冉,康峰沂,杜仲宝. 基于颗粒分布分形模型毛细水上升高度计算分析. 岩土工程学报. 2024(10): 2221-2228 . 本站查看
    2. 曲诗章,刘晓明,黎莉,陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式. 岩土工程学报. 2023(01): 144-152 . 本站查看
    3. 韩志洋,曹志翔,黄开放. 基于离散元模拟的土石混合体剪切与变形特性研究. 中国农村水利水电. 2023(05): 238-244 .
    4. 刘晓义,胡敏,刘大顺. 基于离散元法的砂砾石颗粒破碎特征研究. 低温建筑技术. 2023(12): 24-28 .
    5. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
    6. 王瑞,郭聚坤,尹斌,雷胜友,魏道凯. 钙质砂颗粒形状及破碎特性试验研究. 海洋工程. 2022(05): 158-166 .
    7. 陈晓斌,郭云鹏,蔡德钩,尧俊凯,肖源杰. 铁路工程粗颗粒土路基填料研究现状与发展综述. 路基工程. 2021(03): 1-11 .
    8. 叶阳升,朱宏伟,尧俊凯,蔡德钩,安再展. 高速铁路路基振动压实理论与智能压实技术综述. 中国铁道科学. 2021(05): 1-11 .
    9. 于玉贞,张向韬,王远,吕禾,孙逊. 堆石料真三轴条件下力学特性试验研究进展. 工程力学. 2020(04): 1-21+29 .
    10. 王晓帅,王子寒,景晓昆,肖成志. 粗粒土大型直剪试验宏细观研究与离散元模拟. 深圳大学学报(理工版). 2020(03): 279-286 .
    11. 孟敏强,王磊,蒋翔,汪成贵,刘汉龙,肖杨. 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟. 岩土力学. 2020(09): 2953-2962 .

    Other cited types(20)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return