Citation: | ZHOU Shu-wei, XIA Cai-chu, ZHANG Ping-yang, ZHOU Yu. Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2025-2035. DOI: 10.11779/CJGE201411008 |
[1] |
RAJU M, KHAITAN S K. Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant[J]. Applied Energy, 2012, 89: 474-481.
|
[2] |
KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review[J]. Rev Chem Eng, 2012, 28: 123-148.
|
[3] |
李仲奎, 马芳平, 刘 辉. 压气蓄能电站的地下工程问题及应用前景[J]. 岩石力学与工程学报, 2003, 22(增刊1): 2121-2126. (LI Zhong-kui, MA Fang-ping, LIU Hui. Underground engineering problems in compressed air energy storage and its developing future[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S1): 2121-2126. (in Chinese))
|
[4] |
CROTOGINO F, MOHMEYER K U, SCHARF R. Huntorf CAES: more than 20 years of successful operation[C]// Spring 2001 meeting. Orlando, 2001.
|
[5] |
HAYASHI M. Rock mechanics of compressed air energy storage and super magnetic energy storage in Japan [C]// Rock Mechanics in Japan. Tokyo: Japanese Committee for ISRM, 1991.
|
[6] |
SUCCAR S, WILLIAMS R H. Compressed air energy storage: theory, resources, and applications for wind power[R]. Princeton: Princeton Environmental Institute, Princeton University, 2008.
|
[7] |
ALLEN R D, DOHERTY T J, FOSSUM A F. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns[R]. Springfield: Pacific Northwest Laboratory, 1982.
|
[8] |
LINDBLOM U E. Design criteria for the Brooklyn Union gas storage cavern at JFK Airport[J]. Int J Rock Mech & Min Sci, 1997, 34(3/4): 179.
|
[9] |
ISHIHATA T. Underground compressed air storage facility for CAES-G/T power plant utilizing an airtight lining[J]. Int Soc Rock Mech, 1997, 5(1): 17-21.
|
[10] |
KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Appl Energy, 2012, 92: 653-667.
|
[11] |
KIM H M, RUTQVIST J, CHOI B H. Feasibility analysis of underground compressed air energy storage in lined rock caverns using the TOUGH-FLAC simulator[C]// TOUGH Symposium 2012. Berkeley: Lawrence Berkeley National Laboratory, 2012.
|
[12] |
SONG W K, RYU D W. Stability analysis of concrete plugs in a pilot cavern for compressed air energy storage[C]// Harmonising Rock Engineering and the Environment. London: Taylor & Francis Group, 2012.
|
[13] |
KIM H M, RUTQVIST J, JEONG J H, et al. Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage[J]. Rock Mech Rock Eng, 2012, 4: 312-323.
|
[14] |
JOHANSSON J. High pressure storage of gas in lined rock caverns: cavern wall design principles[D]. Stockholm: Royal Institute of Technology, 2003.
|
[15] |
RUTQVIST J, KIM H M, RYU D W, et al. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[J]. Int J Rock Mech & Min Sci 52: 71-81.
|
[16] |
KUSHNIR R, DAYAN A, ULLMANN A. Temperature and pressure variations within compressed air energy storage caverns[J]. Int J Heat & Mass Transf, 2012, 55(21/22): 5616-5630.
|
[17] |
陈剑文, 蒋卫东, 杨春和, 等. 储气库注、采气过程热工分析研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 2887-2894. (CHEN Jian-wen, JIANG Wei-dong, YANG Chun-he, et al. Study on engineering thermal analysis of gas storage in slat formation during gas injection and production[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 288-2894. (in Chinese))
|
[18] |
BARBUTO F A D A. Performance of numerical inversion of Laplace transforms[J]. Adv Eng Software 1991, 13(3): 148-155.
|
[19] |
刘利强. 拉普拉斯反变换的一种数值算法[J]. 内蒙古工业大学学报, 2002, 21(1): 47-49. (LIU Li-qiang. An algorithm for numerical inversion of Laplace transforms[J]. Journal of Inner Mongolia Polytechnic University, 2002, 21(1): 4-43. (in Chinese))
|
[20] |
徐芝纶. 弹性力学[M]. 4版. 北京: 高等教育出版社, 2006. (XU Zhi-lun. Elasticity[M]. 4th ed. Beijing: Higher Education Press, 2006. (in Chinese))
|
[21] |
张家荣, 赵廷元. 工程常用物质的热物理性质手册[M]. 北京: 新时代出版社, 1987. (ZHANG Jia-rong, ZHAO Ting-yuan. A handbook for the thermo-physical properties of engineering materials[M]. Beijing: New Era Press, 1987. (in Chinese))
|
[22] |
王志魁. 化工原理[M]. 3版. 北京: 化学工业出版社, 2005. (WANG Zhi-kui. Principles of chemical engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2005. (in Chinese))
|
[23] |
KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic models for the temperature and pressure variations within adiabatic caverns of compressed air energy storage plants[J/OL]. [2013-05-14]. doi: 10.1155/2013/603130.
|
1. |
李淑娥,陈志明,徐永福,徐宇冉,康峰沂,杜仲宝. 基于颗粒分布分形模型毛细水上升高度计算分析. 岩土工程学报. 2024(10): 2221-2228 .
![]() | |
2. |
曲诗章,刘晓明,黎莉,陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式. 岩土工程学报. 2023(01): 144-152 .
![]() | |
3. |
韩志洋,曹志翔,黄开放. 基于离散元模拟的土石混合体剪切与变形特性研究. 中国农村水利水电. 2023(05): 238-244 .
![]() | |
4. |
刘晓义,胡敏,刘大顺. 基于离散元法的砂砾石颗粒破碎特征研究. 低温建筑技术. 2023(12): 24-28 .
![]() | |
5. |
孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
![]() | |
6. |
王瑞,郭聚坤,尹斌,雷胜友,魏道凯. 钙质砂颗粒形状及破碎特性试验研究. 海洋工程. 2022(05): 158-166 .
![]() | |
7. |
陈晓斌,郭云鹏,蔡德钩,尧俊凯,肖源杰. 铁路工程粗颗粒土路基填料研究现状与发展综述. 路基工程. 2021(03): 1-11 .
![]() | |
8. |
叶阳升,朱宏伟,尧俊凯,蔡德钩,安再展. 高速铁路路基振动压实理论与智能压实技术综述. 中国铁道科学. 2021(05): 1-11 .
![]() | |
9. |
于玉贞,张向韬,王远,吕禾,孙逊. 堆石料真三轴条件下力学特性试验研究进展. 工程力学. 2020(04): 1-21+29 .
![]() | |
10. |
王晓帅,王子寒,景晓昆,肖成志. 粗粒土大型直剪试验宏细观研究与离散元模拟. 深圳大学学报(理工版). 2020(03): 279-286 .
![]() | |
11. |
孟敏强,王磊,蒋翔,汪成贵,刘汉龙,肖杨. 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟. 岩土力学. 2020(09): 2953-2962 .
![]() |