• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan, ZHAN Ting. Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1777-1783. DOI: 10.11779/CJGE201410003
Citation: LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan, ZHAN Ting. Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1777-1783. DOI: 10.11779/CJGE201410003

Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media

More Information
  • Received Date: December 04, 2013
  • Published Date: October 19, 2014
  • Particle size plays an important role in transportation and deposition of particles in porous media, especially in the WSHP engineering. The transportation-deposition characteristics of particles with different sizes in porous media with different sizes are studied by the self-developed sand transportation-deposition equipment. The studies show that when the size of porous media is fixed and the size of suspended particles increases, it needs more time to reach the peak of relative concentration, and at the same time, the corresponding peak value declines. Meanwhile, when the size of suspended particles is fixed and the size of porous media increases, the peak value of relative concentration also increases. Relative to the porous media, change in the size of suspended particles has more significant effects in the transportation-deposition process. In addition, the peak and final values of relative concentration increase when the diameter ratio of the porous media and suspended particles increases. Finally, according to the difference of diameter ratio, the model of transportation-deposition is divided into three types, i.e., filter cake mode, transportation-deposition mode and free transportation mode. The research lays a foundation for further studies on the transportation-deposition characteristics that suspended particles transport in layer, especially in the recharge process of WSHP.
  • [1]
    RYBACH L, SANNER B. Ground source heat pump systems, the European experience[J]. GHC Bull, 2000, 21(1): 16-26.
    [2]
    ABESSER C. Open-loop ground source heat pumps and groundwater systems: a literature review of current applications, regulations and problems[R]. Nottingham: British Geological Survey, 2010.
    [3]
    SANNER B, KARYTSAS C, MENDRINOS D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe[J]. Geothermics, 2003, 32(4): 579-588.
    [4]
    LUND J, SANNER B, RYBACH L, et al. Geothermal (ground-source) heat pumps-a world overview[J]. GHC Bulletin, 2004, 25(3): 1-10.
    [5]
    AHFIR N D, WANG H Q, BENAMAR A, et al. Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect[J]. Hydrogeology Journal, 2007, 15(4): 659-668.
    [6]
    ZHUANG J, TYNER J S, PERFECT E. Colloid transport and remobilization in porous media during infiltration and drainage[J]. Journal of Hydrology, 2009, 377(1): 112-119.
    [7]
    IWASAKI T, SLADE J J, STANLEY W E. Some notes on sand filtration [with discussion][J]. Journal American Water Works Association, 1937, 29(10): 1591-1602.
    [8]
    楚锡华. 基于连续介质模型的颗粒材料孔隙度及孔隙水压力计算公式[J]. 岩土工程学报, 2009, 31(8): 1255-1257. (CHU Xi-hua. Evolution of porosity and pore water pressure of granular materials based on continuum model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1255-1257. (in Chinese))
    [9]
    SAKTHIVADIVEL R. Clogging of a granular porous medium by sediment[M]. California: Hydraulic Engineering Laboratory, College of Engineering, University of California, 1969.
    [10]
    刘 杰, 张 雄. 多级配砾石土反滤设计方法试验研究[J]. 岩土工程学报, 1996, 18(6): 1-9. (LIU Jie, ZHANG Xiong. Study on filter design of broadly-graded soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 1-9. (in Chinese))
    [11]
    BRADFORD S A, YATES S R, BETTAHAR M, et al. Physical factors affecting the transport and fate of colloids in saturated porous media[J]. Water Resources Research, 2002, 38(12): 1-12.
    [12]
    BAUER D, GOYEAU B, GOBIN D. Large particle transport in porous media: Effect of pore plugging on the macroscopic transport properties[J]. Journal of Porous Media, 2008, 11(4): 343-360.
    [13]
    KAMPEL G, GOLDSZTEIN G H. Transport of non- Brownian particles in porous media[J]. SIAM Journal on Applied Mathematics, 2011, 71(3): 773-790.
    [14]
    陈星欣, 白 冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报, 2012, 34(9): 1661-1667. (CHEN Xing-xin, BAI Bing. Effect of gravity on transport of particles in saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1661-1667. (in Chinese))
    [15]
    MCDOWELL‐BOYER L M, HUNT J R, SITAR N. Particle transport through porous media[J]. Water Resources Research, 1986, 22(13): 1901-1921.
    [16]
    AHFIR N D, BENAMAR A, ALEM A, et al. Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study[J]. Transport in Porous Media, 2009, 76(2): 289-307.
    [17]
    MASSEI N, LACROIX M, WANG H Q, et al. Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters[J]. Journal of Contaminant Hydrology, 2002, 57(1): 21-39.
    [18]
    KANTI SEN T, KHILAR K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Advances in Colloid and Interface Science, 2006, 119(2): 71-96.
    [19]
    FREY J M, SCHMITZ P, DUFRECHE J, et al. Particle deposition in porous media: analysis of hydrodynamic and weak inertial effects[J]. Transport in Porous Media, 1999, 37(1): 25-54.
    [20]
    ZAMANI A, MAINI B. Flow of dispersed particles through porous media—deep bed filtration[J]. Journal of Petroleum Science and Engineering, 2009, 69(1): 71-88.
    [21]
    SOLTANI M, AHMADI G. On particle adhesion and removal mechanisms in turbulent flows[J]. Journal of Adhesion Science and Technology, 1994, 8(7): 763-785.
  • Cited by

    Periodical cited type(14)

    1. 刘小锐,张晗. 盾构隧道下穿施工对严重倾斜挡墙影响及加固措施分析. 粉煤灰综合利用. 2025(01): 145-149 .
    2. 余鹏. 盾构隧道穿越在建PBA车站风险控制技术研究. 铁道标准设计. 2025(04): 148-156 .
    3. 马昭,张明礼,段旭晗,赵博. 大断面浅埋隧道地表沉降Peck修正公式及其应用. 长江科学院院报. 2024(03): 118-125 .
    4. 陈湘生,全昭熹,陈一凡,沈翔,苏栋. 极端环境隧道建造面临的主要问题及发展趋势. 隧道建设(中英文). 2024(03): 401-432 .
    5. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 .
    6. 刘彦良. 水下大直径盾构下穿施工对防汛大堤影响研究. 建筑机械. 2024(07): 142-146 .
    7. 黄震,黄侦谦,侯东祥,尤伟军,管世玉. 盾构掘进对浅基础建筑物的扰动及影响分区研究. 科技通报. 2024(07): 97-106 .
    8. 高泉平,杨硕,芮瑞,张泉,聂利文,孙天健. 邻近挡土结构隧道开挖引起地层变形的试验研究. 武汉理工大学学报. 2023(09): 75-82 .
    9. 张恒旭. 某过江隧道江心洲防洪大堤开挖对周围环境的影响分析. 工程技术研究. 2022(09): 13-17 .
    10. 王智德,武海港,杨文东,李杰,李根,刘奇. 地铁隧道近距离侧穿邻近桩基影响的试验研究. 武汉理工大学学报. 2022(06): 69-77 .
    11. 王长虹,马铖涛,吴昭欣,王昆,汤道飞. CPTU数据校准黏土和砂土统一模型本构参数的随机力学-贝叶斯方法. 土木工程学报. 2022(10): 101-116 .
    12. 董立波. 上软下硬复合地层中盾构下穿既有建筑物受力性能研究. 智能城市. 2021(04): 15-16 .
    13. 芮瑞,翟玉新,徐杨青,何清. 邻近地层损失对地下挡土结构土压力与地表沉降影响试验研究. 岩土工程学报. 2021(04): 644-652 . 本站查看
    14. 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用. 地球科学进展. 2020(10): 1087-1098 .

    Other cited types(11)

Catalog

    Article views (454) PDF downloads (547) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return