Citation: | JIANG Ming-jing, ZHU Fang-yuan. DEM investigation on mechanical properties of methane hydrate bearing soils under different temperatures and pore-water pressures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1761-1769. DOI: 10.11779/CJGE201410001 |
[1] |
SOGA K, LEE S L, NG M Y A, et al. Characterisation and engineering properties of methane hydrate soils[M]. London: Characterisation and Engineering Properties of Natural Soils, 2006: 2591-1642.
|
[2] |
MACDOBALD G T. The future of methane as an energy resource [J]. Annual Review of Energy, 1990, 15(1): 53-83.
|
[3] |
BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modeling of geomechanical behavior of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter, 2010, 12(5): 517-525.
|
[4] |
KVENVOLDEN K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23(11/12): 997-1008.
|
[5] |
HYODO M, NAKATA Y, YOSHIMOTO N, et al. Mechanical behavior of methane hydrate-supported sand[C]// International Symposium on Geotechnical Engineering Ground Improvement and Geosynthetics for Human Security and Environmental Preservation. Thailand, 2007: 195-208.
|
[6] |
MASUI A, HANEDA H, OGATA Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]// Proceedings of the 5th International Offshore and Polar Engineering Conference. Seoul, 2005.
|
[7] |
MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compression properties of artificial methane-hydrate- bearing sediment[J]. Journal of Geophysical Research, 2011, 116(B6): B06102, doi: 10.1029/2010JB008049.
|
[8] |
魏厚振, 颜荣涛, 陈 盼, 等. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. 岩土力学, 2011, 32(增刊2): 198-203. (WEI Hou-zhen, YAN Rong-tao, CHEN Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different contents under traxial shear tests[J]. Rock and Soil Mechanics, 2011, 32(S2): 198-203. (in Chinese))
|
[9] |
刘 芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572. (LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. The traxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1565-1572. (in Chinese))
|
[10] |
NIXON M F, GROZIC J L H. Submarine slope failure due to gas hydrate dissociation: a preliminary quatification[J]. Canadian Geotechnical Journal, 2007, 44(3): 314-325.
|
[11] |
SULTAN N, COCHONAT P, FOUCHER J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213(1): 379-401.
|
[12] |
CUNDALL P A, STRACK O L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
|
[13] |
蒋明镜, 肖 俞, 朱方园. 深海能源土微观力学胶结模型及参数研究[J]. 岩土工程学报, 2012, 34(9): 1574-1583. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. The obtain of micro-contact model and bond parameters for the deep-sea energy soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1574-1583. (in Chinese))
|
[14] |
蒋明镜, 肖 俞, 朱方园. 深海能源土宏观力学性质的离元数值模拟分析[J]. 岩土工程学报, 2013, 35(1): 157-163. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163. (in Chinese))
|
[15] |
蒋明镜, 朱方园, 申志福. 试验反压对深海能源土宏观力学特性影响的离散元分析[J]. 岩土工程学报, 2013, 35(2): 219-226. (JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu. The influence of backpressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. (in Chinese))
|
[16] |
蒋明镜, 朱方园. 一种深海能源土的二维温度-水压-力学微观胶结模型[J]. 岩土工程学报, 2014, 36(7): 1377-1386. (JIANG Ming-jing, ZHU Fang-yuan. Thermal-hydro- mechanical bond contact model for the methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1377-1386. (in Chinese))
|
[17] |
HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
|
[18] |
蒋明镜, 贺 洁, 周雅萍. 基于微观胶结厚度模型的深海能源土宏观力学特性离散元模拟[J]. 岩土力学, 2014, 36(4): 2672-2681. (JIANG Ming-jing, HE Jie, ZHOU Ya-ping. Distinct element analysis of macro-mechanical properties of deep-sea methane hydrate-bearing soil using micro-bond thickness model[J]. Rock and Soil Mechanics, 2014, 36(4): 2672-2681. (in Chinese))
|
[19] |
HYODO M, NAKATA Y, YOSHIMOTO N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45(1): 75-85.
|
[20] |
JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(5): 579-597.
|
1. |
杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
![]() | |
2. |
黄献文,姚直书,蔡海兵,李凯奇,唐楚轩. 基于微观结构重塑的非饱和冻土导热系数预测. 岩土力学. 2023(01): 193-205 .
![]() | |
3. |
陈磊. 基于静力触探测试的深基坑工程土体设计参数应用研究. 广东建材. 2023(04): 72-75 .
![]() | |
4. |
张德,张泽超,张璐璐,张洁,曹子君. 场地有限数据条件下土体不排水抗剪强度的概率分布的贝叶斯估计研究. 岩土工程学报. 2023(06): 1259-1268 .
![]() | |
5. |
曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
![]() | |
6. |
汪明元,张国,潘孙珏徐,陶袁钦. 基于集合卡尔曼滤波的海洋土孔隙率预测研究. 工业建筑. 2023(06): 37-42 .
![]() | |
7. |
黄献文,赵光明,黄顺杰,王泽洲,王雪松,唐楚轩. 基于堆积颗粒几何特征的多尺度渗透注浆扩散半径预测. 岩石力学与工程学报. 2023(08): 2028-2040 .
![]() | |
8. |
柯琪睿,李长冬,姚文敏,范一博,李炳辰. 干湿循环下侏罗系软弱夹层剪切特性与抗剪强度参数概率表征. 水利水电技术(中英文). 2023(11): 192-204 .
![]() |