Citation: | SHI Jian, QIAN Sen, ZENG Ling-ling, HONG Zhen-shun. Undrained shear behaviors of reconstituted Wenzhou clay under different consolidation stress paths[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1674-1679. DOI: 10.11779/CJGE201409014 |
[1] |
曹宇春, 杨建辉. 基于有效固结应力法确定结构性黏性土不排水抗剪强度[J]. 岩土力学, 2013, 34(11): 3085-3090. (CAO Yu-chun, YANG Jian-hui. Undrained shear strength determination of structured clays based on effective consolidation stress method [J]. Rock and Soil Mechanics, 2013, 34(11): 3085-3090. (in Chinese))
|
[2] |
LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-488.
|
[3] |
BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378.
|
[4] |
COTECCHIA F, CHANDLER R J. A general framework for the mechanical behaviour of clays[J]. Géotechnique, 2000, 50(4): 431-447.
|
[5] |
CHANDLER R J. Clay sediments in depositional basin: the geotechnical cycle[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2000, 33(1): 7-39.
|
[6] |
HONG Z S, LIU S Y, SHEN S L, Negami T. Comparison in undrained shear strength between undisturbed and remolded Ariake clays[J]. Journal of Geotechnical and Geoenviron- mental Engineering, ASCE, 2006, 132(2): 272-275.
|
[7] |
HONG Z S, ZENG L L, CUI Y J, et al. Compression behavior of natural and reconstituted clays[J]. Géotechnique, 2012, 62(4): 291-301.
|
[8] |
HONG Z S, YIN J, CUI Y J. Compression behaviour of reconstituted soils at high initial water contents[J]. Géotechnique, 2010, 60(9): 691-700.
|
[9] |
HONG Z S, BIAN X, CUI Y J, GAO Y F, ZENG L L. Effect of initial water content on undrained shear behavior of reconstituted clays[J]. Géotechnique, 2013, 63(6): 441-450.
|
[10] |
CARRIER W D, BECKMAN J F. Correlations between index tests and the properties of remoulded clays[J]. Géotechnique, 1984, 34(2): 211-228.
|
[11] |
倪钧钧. 初始含水率对固有强度线影响规律的试验研究[D]. 南京: 河海大学, 2013. (NI Jun-jun. Experimental study on the effect of initial water content on intrinsic strength line[D]. Nanjing: Hohai University, 2013. (in Chinese))
|
[12] |
MESRI G, ALI S. Undrained shear strength of a glacial clay over consolidated by desiccation[J]. Géotechnique, 1999, 49(2): 181-198.
|
[13] |
YOICHI W, TAKASHI T, KAKUICHIRO A. Undrained shear strength of pleistocene clay in osaka bay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 216-226.
|
[14] |
MAYNE P W. Stress anisotropy effects on clay strength[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(3): 355-366.
|
[15] |
MESRI G. Discussion on “New design procedure for stability of soft clays”[J]. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(4): 409-412.
|
[16] |
MESRI G. A reevaluation of S u(mob) = 0.22 σ ’ p using laboratory shear tests[J]. Canadian Geotechnical Journal, 1989, 26(1): 162-164.
|
[17] |
NAKASE A, KAMEI T. Undrained shear strength anisotropy [J]. Soils and Foundations, 1983, 23(1): 91-101.
|
[18] |
ALLMAN M A, ATKINSON J H. Mechanical properties of reconstituted Bothkennar soil[J]. Géotechnique, 1992, 42(2): 289-301.
|
[19] |
CALLISTO L, RAMPELLO S. An interpretation of structural degradation for three natural clays[J]. Canadian Geotechnical Journal, 2004, 41(3): 392-407.
|
[20] |
王立忠, 沈恺伦. K 0 固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. (WANG Li-zhong, SHEN Kai-lun. A constitutive model of K 0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese))
|
[21] |
曾玲玲, 洪振舜, 刘松玉. 考虑固结路径影响的天然沉积土不排水剪切试验研究[J]. 东南大学学报, 2012, 42(4):744-748. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu. Experimental study on undrained shear behavior of natural clays under various consolidation stress paths [J]. Journal of Southeast University, 2012, 42(4): 744-748. (in Chinese))
|
[22] |
曾玲玲, 洪振舜, 刘松玉, 等. 应力路径对天然沉积土压缩特性影响的试验研究[J]. 岩土工程学报, 2012, 34(7): 1250-1255. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu, et al. Experimental study on different compression behavior of natural clays caused by various stress paths [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1250-1255. (in Chinese))
|
[23] |
JAMIOLKOWSKI M, LADD C C, GERMAINE J T, LANCELLOTTA R. New developments in field and laboratory testing of soils[C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985: 57-153.
|
[24] |
OHTA H, NISHIHARA A. Anisotropy of undrained shear strength of clays under axi-symmetric loading conditions[J]. Soils and Foundations, 1985, 25(2): 78-86.
|
[25] |
姜洪伟, 赵锡宏. K 0 固结粘土各向异性不排水剪强度研究[J]. 岩土力学, 1997, 18(2): 1-7. ((JIANG Hong-wei, ZHAO Xi-hong. Study on anisotropic undrained shear strength of K 0 -consolidated clays[J]. Rock and Soil Mechanics, 1997, 18(2): 1-7. (in Chinese))
|
[26] |
CALLISTO L, CALABRESI G. Mechanical behavior of a natural soft clay[J]. Géotechnique, 1998, 48(4): 495-513.
|
[27] |
BALASUBRAMANIAM A S, HANDALI S, WOOD D M. Pore pressure: stress ratio relationship for soft bangkok clay[J]. Soils and Foundations, 1992, 32(1): 117-131.
|
[1] | XU Bin, LIU Xin-rong, ZHOU Xiao-han, LIU Jun, HUANG Jun-hui, WANG Yan, ZENG Xi. Experimental study on dynamic response law of bedding rock slopes under deterioration of rock mass in hydro-fluctuation belt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1453-1462. DOI: 10.11779/CJGE202208010 |
[2] | ZHANG Qing-song, WANG De-ming, LI Shu-cai, ZHANG Xiao, TAN Ying-hua, WANG Kai. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. DOI: 10.11779/CJGE201703004 |
[3] | LI Yuan-hai, JING Hong-wen, CHEN Kun-fu, JIA Ran-xu. Development and applications of physical model test system with true triaxial loading unit for deep tunnels or roadways[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 43-52. DOI: 10.11779/CJGE201601003 |
[4] | LI Jia-wei, XU Jin, WANG Lu, YANG Hao-tian, YANG Zhi-yue. Water-rock coupling tests on mechanical properties of sandy slate rock mass[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 599-604. |
[5] | LI Yong-bo, ZHANG Hong-ru, QUAN Ke-jiang. Development of model test system for dynamic frozen soil-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 774-780. |
[6] | LIU Hanlong, TAN Huiming, PENG Jie, ZHANG Jianwei. Development of large scale pile foundation model test system[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 452-457. |
[7] | YANG Heping, WAN Liang, ZHENG Jianlong. Development and application of large scale numerical control pullout test system[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1080-1084. |
[8] | YU Boting, SUN Hongyue, SHANG Yuequan. Physical model simulation tests on seepage system in debris-containing clay slopes[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 705-708. |
[9] | Design of servocontrolled cyclic triaxial test system by improvement on static triaxial test equipment[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 787-789. |
[10] | Cai Yuejun, Liu Baochen, Cui Zhilian. Splitting Test for Marble Disc[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(3): 9-15. |
1. |
葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 .
![]() | |
2. |
陆世锋,韩子晶,许领,王逸翔,左璐. 重塑黄土渗气系数室内试验及尺寸效应研究. 工程地质学报. 2025(02): 407-415 .
![]() | |
3. |
王筱予,王丽琴,牛俊涛,吕旭东,邓国华,刘珏,石鹏鑫,王臻. 黄土结构性对其压缩-回弹变形特性的影响. 水利与建筑工程学报. 2024(04): 106-111+133 .
![]() | |
4. |
吕龙龙,廖红建,伏映鹏,夏龙飞,冷先伦. 基于应变能密度映射的黄土结构性参数研究. 岩石力学与工程学报. 2022(02): 399-411 .
![]() | |
5. |
王博,黄雪峰,邱明明,王寒. 延安新区黄土压缩特性试验研究. 水资源与水工程学报. 2022(02): 186-193 .
![]() | |
6. |
曹雪山,袁俊平,丁国权. 抽气现场试验的土工膜下盲沟气阻数值模拟研究. 岩土工程学报. 2022(10): 1780-1788 .
![]() |