SHI Jian, QIAN Sen, ZENG Ling-ling, HONG Zhen-shun. Undrained shear behaviors of reconstituted Wenzhou clay under different consolidation stress paths[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1674-1679. DOI: 10.11779/CJGE201409014
    Citation: SHI Jian, QIAN Sen, ZENG Ling-ling, HONG Zhen-shun. Undrained shear behaviors of reconstituted Wenzhou clay under different consolidation stress paths[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1674-1679. DOI: 10.11779/CJGE201409014

    Undrained shear behaviors of reconstituted Wenzhou clay under different consolidation stress paths

    More Information
    • Received Date: December 19, 2013
    • Published Date: September 21, 2014
    • To investigate the effects of the initial conditions and stress states on the intrinsic undrained strength behaviors of reconstituted clay, a series of consolidated undrained triaxial compression tests are performed on reconstituted Wenzhou clay under different consolidation conditions. The undrained shear stress-strain relationship and undrained strength are investigated. The void index Iv and the undrained strength ratios R*su=Su/ p’ with different mean effective stresses p’ are used to compare the undrained strength Su under different consolidation conditions with the Chandler intrinsic strength line ISuL. The results indicate that the undrained shear stress-strain curves change with the consolidation stress paths under the same mean effective stresses p’. The undrained shear strengths and undrained strength ratios R*su=Su/ p’ are also greatly affected by the consolidation stress paths. When Su/ p’=0.33, the relationship between the void index Iv and the undrained strength Su is identical to the Chandler intrinsic strength line ISuL.
    • [1]
      曹宇春, 杨建辉. 基于有效固结应力法确定结构性黏性土不排水抗剪强度[J]. 岩土力学, 2013, 34(11): 3085-3090. (CAO Yu-chun, YANG Jian-hui. Undrained shear strength determination of structured clays based on effective consolidation stress method [J]. Rock and Soil Mechanics, 2013, 34(11): 3085-3090. (in Chinese))
      [2]
      LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-488.
      [3]
      BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378.
      [4]
      COTECCHIA F, CHANDLER R J. A general framework for the mechanical behaviour of clays[J]. Géotechnique, 2000, 50(4): 431-447.
      [5]
      CHANDLER R J. Clay sediments in depositional basin: the geotechnical cycle[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2000, 33(1): 7-39.
      [6]
      HONG Z S, LIU S Y, SHEN S L, Negami T. Comparison in undrained shear strength between undisturbed and remolded Ariake clays[J]. Journal of Geotechnical and Geoenviron- mental Engineering, ASCE, 2006, 132(2): 272-275.
      [7]
      HONG Z S, ZENG L L, CUI Y J, et al. Compression behavior of natural and reconstituted clays[J]. Géotechnique, 2012, 62(4): 291-301.
      [8]
      HONG Z S, YIN J, CUI Y J. Compression behaviour of reconstituted soils at high initial water contents[J]. Géotechnique, 2010, 60(9): 691-700.
      [9]
      HONG Z S, BIAN X, CUI Y J, GAO Y F, ZENG L L. Effect of initial water content on undrained shear behavior of reconstituted clays[J]. Géotechnique, 2013, 63(6): 441-450.
      [10]
      CARRIER W D, BECKMAN J F. Correlations between index tests and the properties of remoulded clays[J]. Géotechnique, 1984, 34(2): 211-228.
      [11]
      倪钧钧. 初始含水率对固有强度线影响规律的试验研究[D]. 南京: 河海大学, 2013. (NI Jun-jun. Experimental study on the effect of initial water content on intrinsic strength line[D]. Nanjing: Hohai University, 2013. (in Chinese))
      [12]
      MESRI G, ALI S. Undrained shear strength of a glacial clay over consolidated by desiccation[J]. Géotechnique, 1999, 49(2): 181-198.
      [13]
      YOICHI W, TAKASHI T, KAKUICHIRO A. Undrained shear strength of pleistocene clay in osaka bay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 216-226.
      [14]
      MAYNE P W. Stress anisotropy effects on clay strength[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(3): 355-366.
      [15]
      MESRI G. Discussion on “New design procedure for stability of soft clays”[J]. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(4): 409-412.
      [16]
      MESRI G. A reevaluation of S u(mob) = 0.22 σ ’ p using laboratory shear tests[J]. Canadian Geotechnical Journal, 1989, 26(1): 162-164.
      [17]
      NAKASE A, KAMEI T. Undrained shear strength anisotropy [J]. Soils and Foundations, 1983, 23(1): 91-101.
      [18]
      ALLMAN M A, ATKINSON J H. Mechanical properties of reconstituted Bothkennar soil[J]. Géotechnique, 1992, 42(2): 289-301.
      [19]
      CALLISTO L, RAMPELLO S. An interpretation of structural degradation for three natural clays[J]. Canadian Geotechnical Journal, 2004, 41(3): 392-407.
      [20]
      王立忠, 沈恺伦. K 0 固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. (WANG Li-zhong, SHEN Kai-lun. A constitutive model of K 0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese))
      [21]
      曾玲玲, 洪振舜, 刘松玉. 考虑固结路径影响的天然沉积土不排水剪切试验研究[J]. 东南大学学报, 2012, 42(4):744-748. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu. Experimental study on undrained shear behavior of natural clays under various consolidation stress paths [J]. Journal of Southeast University, 2012, 42(4): 744-748. (in Chinese))
      [22]
      曾玲玲, 洪振舜, 刘松玉, 等. 应力路径对天然沉积土压缩特性影响的试验研究[J]. 岩土工程学报, 2012, 34(7): 1250-1255. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu, et al. Experimental study on different compression behavior of natural clays caused by various stress paths [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1250-1255. (in Chinese))
      [23]
      JAMIOLKOWSKI M, LADD C C, GERMAINE J T, LANCELLOTTA R. New developments in field and laboratory testing of soils[C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985: 57-153.
      [24]
      OHTA H, NISHIHARA A. Anisotropy of undrained shear strength of clays under axi-symmetric loading conditions[J]. Soils and Foundations, 1985, 25(2): 78-86.
      [25]
      姜洪伟, 赵锡宏. K 0 固结粘土各向异性不排水剪强度研究[J]. 岩土力学, 1997, 18(2): 1-7. ((JIANG Hong-wei, ZHAO Xi-hong. Study on anisotropic undrained shear strength of K 0 -consolidated clays[J]. Rock and Soil Mechanics, 1997, 18(2): 1-7. (in Chinese))
      [26]
      CALLISTO L, CALABRESI G. Mechanical behavior of a natural soft clay[J]. Géotechnique, 1998, 48(4): 495-513.
      [27]
      BALASUBRAMANIAM A S, HANDALI S, WOOD D M. Pore pressure: stress ratio relationship for soft bangkok clay[J]. Soils and Foundations, 1992, 32(1): 117-131.
    • Related Articles

      [1]XU Bin, LIU Xin-rong, ZHOU Xiao-han, LIU Jun, HUANG Jun-hui, WANG Yan, ZENG Xi. Experimental study on dynamic response law of bedding rock slopes under deterioration of rock mass in hydro-fluctuation belt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1453-1462. DOI: 10.11779/CJGE202208010
      [2]ZHANG Qing-song, WANG De-ming, LI Shu-cai, ZHANG Xiao, TAN Ying-hua, WANG Kai. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. DOI: 10.11779/CJGE201703004
      [3]LI Yuan-hai, JING Hong-wen, CHEN Kun-fu, JIA Ran-xu. Development and applications of physical model test system with true triaxial loading unit for deep tunnels or roadways[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 43-52. DOI: 10.11779/CJGE201601003
      [4]LI Jia-wei, XU Jin, WANG Lu, YANG Hao-tian, YANG Zhi-yue. Water-rock coupling tests on mechanical properties of sandy slate rock mass[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 599-604.
      [5]LI Yong-bo, ZHANG Hong-ru, QUAN Ke-jiang. Development of model test system for dynamic frozen soil-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 774-780.
      [6]LIU Hanlong, TAN Huiming, PENG Jie, ZHANG Jianwei. Development of large scale pile foundation model test system[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 452-457.
      [7]YANG Heping, WAN Liang, ZHENG Jianlong. Development and application of large scale numerical control pullout test system[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1080-1084.
      [8]YU Boting, SUN Hongyue, SHANG Yuequan. Physical model simulation tests on seepage system in debris-containing clay slopes[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 705-708.
      [9]Design of servocontrolled cyclic triaxial test system by improvement on static triaxial test equipment[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 787-789.
      [10]Cai Yuejun, Liu Baochen, Cui Zhilian. Splitting Test for Marble Disc[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(3): 9-15.
    • Cited by

      Periodical cited type(6)

      1. 葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 .
      2. 陆世锋,韩子晶,许领,王逸翔,左璐. 重塑黄土渗气系数室内试验及尺寸效应研究. 工程地质学报. 2025(02): 407-415 .
      3. 王筱予,王丽琴,牛俊涛,吕旭东,邓国华,刘珏,石鹏鑫,王臻. 黄土结构性对其压缩-回弹变形特性的影响. 水利与建筑工程学报. 2024(04): 106-111+133 .
      4. 吕龙龙,廖红建,伏映鹏,夏龙飞,冷先伦. 基于应变能密度映射的黄土结构性参数研究. 岩石力学与工程学报. 2022(02): 399-411 .
      5. 王博,黄雪峰,邱明明,王寒. 延安新区黄土压缩特性试验研究. 水资源与水工程学报. 2022(02): 186-193 .
      6. 曹雪山,袁俊平,丁国权. 抽气现场试验的土工膜下盲沟气阻数值模拟研究. 岩土工程学报. 2022(10): 1780-1788 . 本站查看

      Other cited types(6)

    Catalog

      Article views (338) PDF downloads (466) Cited by(12)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return