• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Zhi-qiang, GAO Qian, WANG Yong-qian, NI Wen, CHEN De-xin. Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1498-1506. DOI: 10.11779/CJGE201408016
Citation: YANG Zhi-qiang, GAO Qian, WANG Yong-qian, NI Wen, CHEN De-xin. Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1498-1506. DOI: 10.11779/CJGE201408016

Experimental study on new filling cementing material using water-hardening nickel slag tailings of Jinchuan Mine

More Information
  • Received Date: January 12, 2014
  • Published Date: August 18, 2014
  • By the end of 2012, the stockpiled quantity of nickel copper slag of Jinchuan Mine in China was 3.3×107 t, and 2.5×106 t is yielded every year. The quantity of discharging waste nickel slag every year is 1.25×106 t when the iron is extracted from the water-hardening nickel slag. Using metallurgical waste to develope a new type of filling cementing agent for mines can realize recycling use of waste and may reduce the cost of filling mining. Based on the characters of the water-hardening nickel slag of Jinchuan Mine, both the mechanical activation and chemical activation are implemented to obtain a new type of filling cementing agent. Based on the mechanical activation, the best specific surface areas of nickel slag tailings, desulfurization gypsum, calcium carbide slag and cement clinker are respectively 620, 200, 200 and 300 m2/kg. The chemical activation may use desulfurization gypsum and calcium carbide slag as the main activators, and sodium sulfate and cement clinker as the auxiliary ones. When the mixing amount of nickel slag tailings is 85%, the optimal mixing amounts of the compound activating dosage are respectively 5%, 5%, 3% and 2%. If the PC high efficiency water reducing agent of 0.156% is added, the strengths of filling body for 7 and 28 d will be respectively 2.9 and 6.3 MPa when the cement-sand ratio is 1∶4 and the concentration of the slurry is 79%, which can meet the strength of filling body for safe mining in Jinchuan Mine. It is seen that the proposed new type of filling cementing agent can replace cement for filling mining in Jinchuan Mine.
  • [1]
    朱桂林, 孙树杉, 王建华. 高炉矿渣粉作高性能混凝土掺合料的研究和应用[J]. 粉煤灰, 2001, 13(2): 17-18. (ZHU Gui-lin, SUN Shu-shan, WANG Jian-hua. Research and application of blast furnace slag for high performance concrete admixture[J]. Coal Ash China, 2001, 13(2): 17-18. (in Chinese))
    [2]
    刘家详, 杨 儒, 胡明辉. 高炉水淬渣的利用研究[J]. 矿产综合利用, 2003(3): 40-44. (LIU Jia-xiang, YANG Ru, HU Ming-hui. Utilization of blast furnace slag water quenching[J]. Utilization of Mineral Resources, 2003(3): 40-44. (in Chinese))
    [3]
    杨长辉, 刘先锋, 刘 建. 碱矿渣水泥及混凝土化学外加剂的研究进展[J]. 混凝土, 2006(4): 17-18; 28. (YANG Chang-hui, LIU Xian-feng, LIU Jian. Alkali slag cement and concrete research progress of chemical admixtures[J]. Concrete, 2006(4): 17-18; 28. (in Chinese))
    [4]
    陈益民, 张洪滔, 郭随华, 等. 磨细钢渣粉作水泥高活性混合材料的研究[J]. 水泥, 2001(5): 1-4. (CHEN Y M, ZHANG H T, GUO S H, et al. Research of finely ground steel slag as cement mixing materials with high activity[J]. Cement, 2001(5): 1-4. (in Chinese))
    [5]
    何 娟, 程从密, 李烈军. 细度对电炉钢渣活性指数的影响[J]. 混凝土, 2011(7): 77-78. (HE Juan, CHENG Cong-mi, LI Lie-jun. The influence of fineness of electric furnace steel slag activity index[J]. Concrete, 2011(7): 77-78. (in Chinese))
    [6]
    孔祥文, 王 丹, 隋智通. 矿渣胶凝材料的活化机理及高效激发剂[J]. 中国资源综合利用, 2004(6): 21-26. (HONG Xiang-wen, WANG Dan, SUI Zhi-tong. The activation mechanism of slag cement materials and efficient excitation agent[J]. Comprehensive utilization of resources in China. 2004(6): 21-26. (in Chinese))
    [7]
    丁 铸, 张 鸣, 邢 锋. 矿渣水硬活性的复合激发试验研究[J]. 广东建材, 2008(9): 12-14. (DING Zhu, ZHANG Ming, XING Feng. Experimental study on hydraulic activity of slag composite excitation[J]. Guangdong Building Materials, 2008(9): 12-14. (in Chinese))
    [8]
    丁 铸, 王淑平, 张 鸣. 钢渣水硬活性的激发研究[J]. 山东建材, 2008(4): 47-50. (DING Zhu, WANG Shu-ping, ZHANG Ming. The activity of steel slag hydraulic inspired research[J]. Journal of Shandong Building Materials, 2008(4): 47-50. (in Chinese))
    [9]
    李永鑫, 陈益民. 磨细矿物掺合料对水泥硬化浆体孔结构及砂浆强度的影响[J]. 硅酸盐学报, 2006, 34(5): 575-579. (LI Yong-xin, CHEN Yi-min. Impact on the pore structure of hardened cement paste and mortar strength of finely ground mineral admixtures[J]. Ceramic Society, 2006, 34(5): 575-579. (in Chinese))
    [10]
    董 璐, 高 谦, 南世卿. 超细全尾砂新型胶结充填料水化机理与性能[J]. 中南大学学报, 2013, 44(4): 1571-1577. (DONG Lu, GAO Qian, NAN Shi-qing. Ultrafine backfilling materials all new hydration mechanism and performance of cemented filling[J]. Journal of Central South University, 2013, 44(4) : 1571-1577. (in Chinese))
    [11]
    魏 微, 高 谦. 复配外加剂对全尾砂新型胶凝材料强度的影响[J]. 化工矿物与加工, 2013(7): 18-22. (WEI Wei, GAO Qian. The impact of the whole complex admixture of new tailings cementitious material strength[J]. Industrial Minerals and Processing, 2013(7): 18-22. (in Chinese))
    [12]
    魏 微, 高 谦, 杨志强. 全尾砂新型胶凝材料的现场力学试验[J]. 金属矿山, 2013(8): 150-152. (WEI Wei, GAO Qian, YANG Zhi-qiang. The backfilling the scene of new cementing material mechanics test[J]. Metal mine, 2013(8): 150-152. (in Chinese))
  • Cited by

    Periodical cited type(18)

    1. 张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
    2. 高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
    3. 朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
    4. 徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
    5. 耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
    6. 蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
    7. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    8. 郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
    9. 袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
    10. 赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
    11. 杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
    12. 胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
    13. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    14. 张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 . 本站查看
    15. 陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
    16. 贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
    17. 黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
    18. 申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 . 本站查看

    Other cited types(19)

Catalog

    Article views (356) PDF downloads (591) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return