JIANG Ming-jing, ZHU Fang-yuan. A two-dimensional thermal-hydro-mechanical bond contact model for methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1377-1386. DOI: 10.11779/CJGE201408001
    Citation: JIANG Ming-jing, ZHU Fang-yuan. A two-dimensional thermal-hydro-mechanical bond contact model for methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1377-1386. DOI: 10.11779/CJGE201408001

    A two-dimensional thermal-hydro-mechanical bond contact model for methane hydrate bearing soils

    More Information
    • Received Date: July 23, 2013
    • Published Date: August 18, 2014
    • The strength and deformation of methane hydrate bearing soils are influenced by their inter-particle cemented hydrate, the extent of which depends on the surrounding temperature, pore-water pressure and mechanical environment. It is aimed to establish a thermal-hydro-mechanical bond contact model for methane hydrate bearing soils. Firstly, contact force-displacement laws and bond failure criteria are presented according to two types of bond modes that methane hydrate may present. Secondly, the strength and stiffness of inter-particle cemented hydrate are studied with respect to the parameter L which identifies the minimum distance from a point to the phase equilibrium line in the coordinate system with ordinate being dimensionless pore-water pressure and abscissa being dimensionless temperature. Finally, the size of cemented hydrate is calculated corresponding to the methane hydrate saturation. The proposed bond contact model can be easily implemented into the distinct element method (DEM), providing an efficient tool for investigating the macro- and micro-mechanical behaviors of methane hydrate bearing soils.
    • [1]
      MACDOBALD G T. The future of methane as an energy resource[J]. Annual Review of Energy, 1990, 15: 53-83.
      [2]
      MAX M D, LOWRIE A. Oceanic methane hydrate: a “frontier” gas resource[J]. Journal of Petroleum Geology, 1996, 19(1): 41-56.
      [3]
      WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(RG4003).
      [4]
      BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modeling of geomechanical behavior of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter, 2010, 12: 517-525.
      [5]
      MAX M D. Natural gas hydrate: in oceanic and permafrost environments[M]. London: Kluwer Academic Publishers, 2000: 61-76.
      [6]
      NIXON M F, GROZIC J L H. Submarine slope failure due to gas hydrate dissociation: a preliminary quatification[J]. Canadian Geotechnical Journal, 2007, 44: 314-325.
      [7]
      SULTAN N, COCHONAT P, FOUCHER J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213: 379-401.
      [8]
      HYODO M, NAKATA Y, YOSHIMOTO N, et al. Mechanical behavior of methane hydrate-supported sand[C]// International Symposium on Geotechnical Engineering Ground Improvement and Geosynthetics for Human Security and Environmental Preservation. Bangkok, 2007.
      [9]
      HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate- bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
      [10]
      MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compression properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 16, B06102.
      [11]
      SANTAMARINA J C, RUPPEL C. The impact of hydrate saturation on the mechanical, electrical, and thermal proper-ties of hydrate-bearing sand, silts, and clay[C]// The 6th International Conference on Gas Hydrate. Vancouver, 2008.
      [12]
      魏厚振, 颜荣涛, 陈 盼, 等. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. 岩土力学, 2011, 32(增刊2): 198-203. (WEI Hou-zhen, YAN Rong-tao, CHEN Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different contents under traxial shear tests[J]. Rock and Soil Mechanics, 2011, 32(S2): 198-203. (in Chinese))
      [13]
      吴二林, 魏厚振, 颜荣涛, 等. 考虑损伤的含天然气水合物沉积物本构模型[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3045-3050. (WU Er-lin, WEI Hou-zhen, YAN Rong-tao, et al. Constitutive model for gas hydrate-bearing sediments considering damage[J]. 2012, 31(S1): 3045-3050. (in Chinese))
      [14]
      李洋辉, 宋永臣, 于 锋, 等. 围压对水合物沉积物力学特性的影响[J]. 石油勘探与开发, 2011, 38(5): 637-640. (LI Yang-hui, SONG Yong-chen, YU Feng, et al. Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments[J]. Petroleum Exploration and Development, 2011, 38(5): 637-640. (in Chinese))
      [15]
      刘 芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572. (LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. The traxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1565-1572. (in Chinese))
      [16]
      CUNDALL P A, STRACK O L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29: 47-65.
      [17]
      JUNG J W, SANTAMARINA J C, SOGA K. Stress-strain response of hydrate-bearing sands: numerical study using discrete element method simulations[J]. Journal of Geophysical Research, 2012, 117(B04202).
      [18]
      KREITER S, FEESER V, KREITER M, et al. A distinct element simulation including surface tension-towards the modeling of gas hydrate behavior[J]. Computational Geosciences, 2007, 11: 117-129.
      [19]
      HOLTZMAN R. Mechanical properties of granular materials: a variational approach to grain-scale simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33: 391-404.
      [20]
      蒋明镜, 刘 芳, 肖 俞. 深海能源土开采对海床稳定性的影响研究思路[J]. 岩土工程学报, 2010, 32(9): 1412-1417. (JIANG Ming-jing, LIU Fang, XIAO Yu. Methodology for assessing seabed instability induced by exploitation of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1412-1417. (in Chinese))
      [21]
      JIANG M J, SUN Y G, XIAO Y. An experimental investigation on the mechanical behavior between cemented granule[J]. Geotechnical Testing Journal (ASTM), 2012, 35(5): 678-690.
      [22]
      JIANG M J, SUN Y G, LI L Q, et al. Contact behavior of idealized granules bonded in two different interparticle distances: An experimental investigation[J]. Mechanics of Materials, 2012, 55: 1-15.
      [23]
      蒋明镜, 肖 俞, 朱方园. 深海能源土微观力学胶结模型及参数研究[J]. 岩土工程学报, 2012, 34(9): 1574-1583. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. The obtain of micro-contact model and bond parameters for the deep-sea energy soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1574-1583. (in Chinese))
      [24]
      蒋明镜, 肖 俞, 朱方园. 深海能源土宏观力学性质的离散元数值模拟分析[J]. 岩土工程学报, 2013, 35(1): 157-163. (JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163.(in Chinese))
      [25]
      蒋明镜, 朱方园, 申志福. 试验反压对深海能源土宏观力学特性影响的离散元分析[J]. 岩土工程学报, 2013, 35(2): 219-226. (JIANG Ming-jing, ZHU Fang-yuan, Shen Zhi-fu. The influence of backpressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. (in Chinese))
      [26]
      蒋明镜, 贺 洁, 周雅萍. 基于微观胶结厚度模型的深海能源土宏观力学特性离散元模拟[J]. 岩土力学, 2013, 34(9): 2672-2682. (JIANG Ming-jing, HE Jie, ZHOU Ya-ping. Distinct element analysis of macro-mechanical properties of deep-sea methane hydrate-bearing soil using micro-bond thickness model[J]. Rock and Soil Mechanics, 2013, 34(9): 2672-2682. (in Chinese))
      [27]
      JIANG M J, YU H S, HARRIS D. Bonding rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods Geomechanics, 2006, 30: 723-761.
      [28]
      JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32: 340-357.
      [29]
      HYODO M, HYDE A F L, NAKATA Y, et al. Triaxial compressive strength of methane hydrate[C]// Proceedings of the 12th International Offshore and Polar Engineering Conference. Kitakyushu, 2002: 422-428.
      [30]
      SONG Y C, YU F, LI Y H, et al. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 2010, 19: 246-250.
      [31]
      YU F, SONG Y C, LIU W G, et al. Study on shear strength of artificial methane hydrate[C]// Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering OMAE 2010. Shanghai, 2010: 1-6.
      [32]
      NABESHIMA Y, MATSUI T. Static shear behaviors of methane hydrate and ice[C]// Proceedings of the fifth ocean mining symposium. Tsukuba, 2003: 156-159.
      [33]
      NABESHIMA Y, TAKAI Y. Compressive strength and density of methane hydrate[C]// Proceedings of the 6th ISOPE Ocean Mining Symposium. Changshai, 2005: 199-202.
      [34]
      HYODO M, NAKATA Y, NORIMASA Y, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45(1): 75-85.
      [35]
      ECKER C, DVORKIN J, NUR A. Sediments with gas hydrates: Internal structure from seismic AVO[J]. Geophysics, 1998, 63: 1659-1669.
      [36]
      BEHSERESHT J, PENG Y, PRODANOVIC M, et al. Mechanisms by which methane gas and methane hydrate coexist in ocean sediments[C]// The Offshore Technology Conference. Houston, 2008.

    Catalog

      Article views (442) PDF downloads (524) Cited by()
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return