• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Zhong-xian, WANG Dong. Effect of different wave velocity models on seismic response of alluvial valley based on FEM-IBIEM[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1289-1301. DOI: 10.11779/CJGE201407013
Citation: LIU Zhong-xian, WANG Dong. Effect of different wave velocity models on seismic response of alluvial valley based on FEM-IBIEM[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1289-1301. DOI: 10.11779/CJGE201407013

Effect of different wave velocity models on seismic response of alluvial valley based on FEM-IBIEM

More Information
  • Received Date: July 04, 2013
  • Published Date: July 24, 2014
  • Accurate wave velocity model is essential for site effect analysis, while there is large uncertainty in determining the actual wave velocity. The simplified homogeneous and layered model is usually adopted, or the wave velocity is assumed to vary linearly, quadraticly and exponentially according to the drilling data. However, the effect of different velocity models on seismic response of the alluvial valley is not clear. It is attempted to reveal the influence mechanism through quantitative analysis both in frequency and time domains using an accurate finite element-indirect boundary integral equation method. The numerical results show that for incident low-frequency waves (), different velocity models have little influence on the surface displacement amplitude. As the frequency increases, the influence becomes more and more significant. The difference between the linear model and homogeneous model is highlighted. It is found that the high-frequency resonance and the basin edge effect in the case of linear models seem more remarkable, which lead to the concentration of earthquake energy mainly in the near surface layer, the surface displacement amplitude in the valley is significantly enlarged, and the duration of earthquake ground motion increases obviously as well. In addition, the alluvial valley shape and the incident angle also have significant influence on the scattering characteristics of seismic waves, and the focusing area varies for different wave types. It is necessary to obtain wave velocity structure and boundary geometrical features of actual alluvial valley for the accurate simulation of earthquake ground motion.
  • [1]
    TRIFUNAC M D. Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves[J]. Bulletin of the Seismological Society of America, 1971, 61(6): 1755-1770.
    [2]
    YUAN X M, LIAO Z P. Scattering of plane SH waves by a cylindrical alluvial valley of circular-arc cross-section[J]. Earthquake Engineering and Structural Dynamics, 1995, 24(10): 1303-1313.
    [3]
    梁建文, 张郁山, 顾晓鲁, 等. 圆弧形层状沉积河谷场地在平面SH波入射下动力响应分析[J]. 岩土工程学报, 2000, 22(4): 396-401. (LIANG Jian-wen, ZHANG Yu-shan, GU Xiao-lu, et al. Surface motion of circular-arc layered alluvial valleys for incident plane SH waves[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 396-401. (in Chinese))
    [4]
    BOORE D M, LARNER K L, AKI K. Comparison of two independent methods for the solution of wave scattering problems: response of a sedimentary basin to incident SH waves[J]. Journal of Geophysical Research, 1971, 76(2): 558-569.
    [5]
    周国良, 李小军, 侯春林, 等. SV 波入射下河谷地形地震动分布特征分析[J]. 岩土力学, 2012, 33(4): 1161-1166. (ZHOU Guo-liang, LI Xiao-jun, HOU Chun-lin, et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves[J]. Rock and Soil Mechanics, 2012, 33(4): 1161-1166. (in Chinese))
    [6]
    刘中宪, 梁建文, 赵瑞斌. 流体饱和层状半空间中沉积谷地对地震波的散射—IBIEM 求解[J]. 岩土工程学报, 2013, 35(3): 512-522. (LIU Zhong-xian, LIANG Jian-wen, ZHAO Rui-bin. Indirect boundary integral equation method for solving scattering of seismic waves by an alluvial valley in fluid poroelastic layered half-space[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 512-522. (in Chinese))
    [7]
    KAWASE H, KEIITI A K. A study on the response of a soft basin for incident P, S, Rayleigh waves with special reference to the long duration observed in Mexico city[J]. Bulletin of Seismological Society of America, 1989, 79(5): 1361-1382.
    [8]
    SANCHEZ-SESMA F J, RAMOS-MARTINEZ J, CAMPILLOR M. An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh Waves[J]. Earthquake Engineering and Structural Dynamics, 1993, 22(4): 279-295.
    [9]
    DRAVINSKI M, MOSSESSIAN T K. Application of a hybrid method for scattering of P, SV and Rayleigh waves by near-surface irregularities[J]. Bulletin of the Seismological Society of America, 1987, 77(5): 1784-1803.
    [10]
    高玉峰, 刘汉龙. 合肥膨胀土剪切波速的特征分析[J]. 岩土工程学报, 2003, 25(3): 371-373. (GAO Yu-feng, LIU Han-long. Study on shear wave velocities in expansive soils of Hefei[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 371-373. (in Chinese))
    [11]
    邱志刚, 薄景山, 罗奇峰, 等. 土壤剪切波速与埋深关系的统计分析[J]. 世界地震工程, 2011, 27(3): 81-88. (QIU Zhi-gang, BO Jing-shan, LUO Qi-feng. Statistical analysis of relationship between shear wave velocity and depth of soil[J]. World Earthquake Engineering, 2011, 27(3): 81-88. (in Chinese))
    [12]
    WANG Y, TAKENAKA H, FURUMURA T. Effect of vertical velocity gradient on ground motion in a sediment-filled basin due to incident SV wave[J]. Earth Planets and Space, 2000, 52(1): 13-24.
    [13]
    LUZÓN F, SÁNCHEZ-SESMA F J, PÉREZ-RUIZ J A, et al. In-plane seismic response of inhomogeneous alluvial valleys with vertical gradients of velocities and constant Poisson ratio[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(6): 994-1004.
    [14]
    GE Z. Simulation of the seismic response of sedimentary basins with constant-gradient velocity along arbitrary direction using boundary element method: SH case[J]. Earthquake Science, 2010, 23(2): 149-155.
    [15]
    HAGSTROM T, MAR-OR A, GIVOLI D. High-order local absorbing conditions for the wave equation: Extensions and improvements[J]. Journal of Computational Physics, 2008, 227(6): 3322-3357.
    [16]
    LAMB H. On the propagation of tremors over the surface of an elastic solid[C]// Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. London, 1904, 203: 1-42.
    [17]
    DRAVINSKI M, MOSSESSIAN T K. Scattering of plane harmonic P, SV, and Rayleigh waves by dipping layers of arbitrary shape[J]. Bulletin of the Seismological Society of America, 1987, 77(1): 212-235.
  • Cited by

    Periodical cited type(9)

    1. 陈梦豪,付海,曹珊珊,林铭宇,陈良宇. 温度对MX-80膨润土物理性能的影响. 金陵科技学院学报. 2024(01): 46-53 .
    2. 李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 . 本站查看
    3. 薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 .
    4. 项国圣,卞云飞,付文青,周殷康. 热-碱作用对压实膨润土抗剪性能的影响. 安徽建筑大学学报. 2024(06): 8-14 .
    5. 李彩霞,李俊,徐猛,刘敏,刘桂祺. 氯盐溶液对钠基膨润土垫层膨胀性能的影响. 土木与环境工程学报(中英文). 2023(01): 97-104 .
    6. 王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 .
    7. 曾召田,张瀚彬,邵捷昇,车东泽,吕海波,梁珍. MX-80膨润土高温老化时间效应的细微观分析. 岩土力学. 2023(S1): 145-153 .
    8. 胡志杰,项国圣,付文青,王浩,李华健. 荷载-溶液作用下膨润土压缩渗透性能研究. 地下空间与工程学报. 2023(06): 1851-1858 .
    9. 项国圣,胡志杰,葛磊,王浩. 含盐水溶液作用下膨润土膨胀性能衰减机理. 华北水利水电大学学报(自然科学版). 2022(05): 85-91 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return