• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HENG Shuai, YANG Chun-he, ZENG Yi-jin, GUO Yin-tong, WANG Lei, HOU Zhen-kun. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1243-1251. DOI: 10.11779/CJGE201407008
Citation: HENG Shuai, YANG Chun-he, ZENG Yi-jin, GUO Yin-tong, WANG Lei, HOU Zhen-kun. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1243-1251. DOI: 10.11779/CJGE201407008

Experimental study on hydraulic fracture geometry of shale

More Information
  • Received Date: December 15, 2013
  • Published Date: July 24, 2014
  • For thorough understanding of the propagation and spatial form of hydraulic fracture of shale formations, a large-scale physical simulation test method for hydraulic fracture of shale is established by means of the large real triaxial simulation experiment system, servo control system of hydraulic fracturing, acoustic emission (AE) source orientation technique and CT scanning technology. The mechanism of the formation of the fracture network is exposed according to the crack extension and special distribution of shale tested by this method. The results indicate that the typical jagged pump pressure-time curve at extending stage, which may be closely related to the formation of fracture network, is an obvious feature of the volume fracture of shale. The fracture morphology is strongly influenced by the development degree of bedding planes, pump pressures and stress conditions. Branching and re-orientation of hydraulic fractures in bedding planes and then interconnecting with natural fractures are the main factors of the formation of fracture network. The bedding plane which is too weak or too strong is not conducive to the formation of fracture mesh. The stress condition plays a great role in controlling the extension of fractures for intermediate formations. Hydraulic fractures are easy to change direction and propagate when the pump pressure is kept at a lower level. The physical simulation method for hydraulic fracture and the corresponding test results can provide references for fracture optimization design in exploiting shale gas.
  • [1]
    NELSON P H. Pore-throat sizes in sandstones, tight sandstones and shales[J]. A A P G Bulletin, 2009, 93(3): 329-340.
    [2]
    马永生, 冯建辉, 牟泽辉, 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012, 6(4): 22-30. (MA Yong- sheng, FENG Jian-hui, MOU Ze-hui, et al. Potential and current situation of unconventional oil andgas resource in Sinopec[J]. Engineering Sciences, 2012, 6(4): 22-30. (in Chinese))
    [3]
    唐 颖, 唐 玄, 王广源, 等. 页岩气开发水力压裂技术综述[J]. 地质通报, 2011, 30(2/3): 393-399. (TANG Ying, TANG Xuan, WANG Guang-yuan, et al. Summary of hydraulic fracturing technology in shale gas development[J]. Geological Bulletin of China, 2011, 30(2/3): 393-399. (in Chinese))
    [4]
    邹才能, 董大忠, 王社较, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. (ZOU Cai-neng, DONG Da-zhong, WANG She-jiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. (in Chinese))
    [5]
    王公昌, 姜瑞忠, 徐建春. 当前页岩气资源开发的瓶颈及建议[J]. 复杂油气藏, 2012, 5(2): 10-14. (WANG Gong-chang, JIANG Rui-zhong, XU Jian-chun. Analysis and advice for shale gas development[J]. Complex Hydrocarbon Reservoirs, 2012, 5(2): 10-14. (in Chinese))
    [6]
    谢和平, 高 峰, 鞠 杨, 等. 页岩储层压裂改造的非常规理论与技术构想[J]. 四川大学学报(工程科学版), 2012, 44(6): 1-6. (XIE He-ping, GAO Feng, JU Yang, et al. Unconventional theories and strategies for fracturing treatments of shale gas strata[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(6): 1-6. (in Chinese))
    [7]
    WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220.
    [8]
    WARPINSKI N R. Hydraulic fracturing in tight, fissured media[J]. Journal of Petroleum Technology, 1991, 42(2): 146-151.
    [9]
    WARPINSKI N R, LORENZ J C, SANDIA N, et al. Examination of a cored hydraulic fracture in a deep gas well[J]. SPE Production & Facilities, 1993, 8(3): 150-158.
    [10]
    MAHRER K D. A review and perspective on far-field hydraulic fracture geometry studies[J]. Journal of Petroleum Science and Engineering, 1999, 24(1): 13-28.
    [11]
    BEUGELSDIJK L J L, DE Pater C J, SATO K. Experimental hydraulic fracture propagation in a multi-fractured medium[C]// SPE Asia Pacific Conference on Integrated Modelling for Asset Management. Society of Petroleum Engineers, 2000.
    [12]
    BLANTON T L. An experimental study of interaction between hydraulically induced and pre-existing fractures[C]// SPE Unconventional Gas Recovery Symposium. Society of Petroleum Engineers, 1982.
    [13]
    BLANTON T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[C]// SPE Unconventional Gas Technology Symposium. Society of Petroleum Engineers, 1986.
    [14]
    FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to improve stimulations in the barnett shale[J]. SPE Production & Facilities, 2005, 20(2): 85-93.
    [15]
    FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completions in the Barnett shale with microseismic fracture mapping[J]. Journal of Petroleum Technology, 2005, 57(3): 41-42.
    [16]
    MAXWELL S C, URBANCIC T I, STEINSBERGER N, et al. Microseismic imaging of hydraulic fracture complexity in the Barnett shale[C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2002.
    [17]
    URBANCIC T I, MAXWELL S C. Microseismic imaging of fracture behavior in naturally fractured reservoirs[C]// SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.
    [18]
    MAYERHOFER M J, LOLON E P, YOUNGBLOOD J E, et al. Integration of microseismic-fracture-mapping results with numerical fracture network production modeling in the Barnett Shale[C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2006.
    [19]
    MAYERHOFER M J, LOLON E, WARPINSKI N R, et al. What is stimulated reservoir volume?[J]. SPE Production & Operations, 2010, 25(1): 89-98.
    [20]
    陈 勉, 庞 飞, 金 衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000, 19(增刊): 868-872. (CHEN Mian, PANG Fei, JIN Yan. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S0): 868-872. (in Chinese))
    [21]
    周 健, 陈 勉, 金 衍, 等. 裂缝性储层水力裂缝扩展机理试验研究[J]. 石油学报, 2007, 28(5): 109-113. (ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2007, 28(5): 109-113.(in Chinese))
    [22]
    姚 飞, 陈 勉, 吴晓东, 等. 天然裂缝性地层水力裂缝延伸物理模拟研究[J]. 石油钻采工艺, 2008, 30(3): 83-86. (YAO Fei, CHEN Mian, WU Xiao-dong, et al. Physical simulation of hydraulic fracture propagation in naturally fractured formations[J]. Oil Drilling & Production Technology, 2008, 30(3): 83-86. (in Chinese))
  • Related Articles

    [1]XU Kun, ZHOU Wei, MA Gang, CHANG Xiao-lin, YANG Li-fu. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. DOI: 10.11779/CJGE201805013
    [2]HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053
    [3]DAI Xin, XU wei, ZOU Li, SHEN Qing-feng. Numerical simulation of shafts during excavation process[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 154-157.
    [4]LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Effect of particle breakage on strength and deformation of modeled rockfills[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1691-1800.
    [5]Numerical simulation of 3D hydraulic fracturing process[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1875-1881.
    [6]Numerical simulation of a new damage rheology model for jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [7]KONG Dezhi, ZHANG Bingyin, SUN Xun. Triaxial tests on particle breakage strain of artificial rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 464-469.
    [8]SHI Danda, ZHOU Jian, JIA Mincai, YAN Dongxiao. Numerical simulations of particle breakage property of sand under high pressure 1D compression condition by use of particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 736-742.
    [9]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [10]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.

Catalog

    Article views (812) PDF downloads (1372) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return