• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LI Lei, ZHANG Meng-xi, WU Hui-ming, WANG Yong-jia. Influence of short-distance multi-line overlapped shield tunnelling on deformation of existing tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1036-1043. DOI: 10.11779/CJGE201406007
Citation: LI Lei, ZHANG Meng-xi, WU Hui-ming, WANG Yong-jia. Influence of short-distance multi-line overlapped shield tunnelling on deformation of existing tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1036-1043. DOI: 10.11779/CJGE201406007

Influence of short-distance multi-line overlapped shield tunnelling on deformation of existing tunnels

More Information
  • Received Date: September 22, 2013
  • Published Date: June 19, 2014
  • Considering the complicated project of four-line overlapped tunnels in Shanghai metro construction, in which Metro Line 11 below-shield and above-shield crosses the existing Metro Line 4 successively, numerical modelling and in-situ monitoring are employed to study the influence of shield tunnelling on the deformation of the existing tunnels. According to the distribution law of earth pressure around the existing tunnels, the shield operation parameters are set to change with the advance of the EPB shield machine. Particular attention is paid to the effect of the chamber earth pressure and grouting pressure on the deformation of the existing tunnels during the below-shield tunnelling as well as the loading scope and its value during the above-shield tunnelling. The results show that the settlement of the existing tunnels stays at the same level as the chamber earth pressure ratio increases, while it increases with the decrease of the grouting pressure ratio. Construction measures, which follow the principle of synchronous loading in the new tunnel mainly and loading in the existing tunnel secondarily, should be taken to control the heave and partial uplift of the existing tunnels during the above-shield tunnelling.
  • [1]
    贾颖绚, 刘维宁, 孙晓静, 等. 三维交叠隧道列车运营对环境的振动影响[J]. 铁道学报, 2009, 31(2): 104-109. (JIA Ying-xuan, LIU Wei-ning, SUN Xiao-jing, et al. Vibration effect on surroundings induced by passing trains in spatial overlapping tunnels[J]. Journal of the China Railway Society, 2009, 31(2): 104-109. (in Chinese))
    [2]
    YAMAGUCHI I, YAMAZAKI I, KIRITANL Y. Study of ground-tunnel interactions of four shield tunnels driven in close proximity, in relation to design and construction of parallel shield tunnels[J]. Tunnelling and Underground Space Technology, 1998, 13(3): 289-304.
    [3]
    肖潇, 张孟喜, 吴惠明, 等. 多线叠交盾构施工引起土体变形数值模拟分析[J]. 地下空间与工程学报, 2011, 7(5): 884-889. (XIAO Xiao, ZHANG Meng-xi, WU Hui-ming, et al. Numerical simulation analysis on ground settlements caused by multi-line shield tunnel[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(5): 884-889. (in Chinese))
    [4]
    KASPER T, MESCHKE G. On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling[J]. Tunnelling and Underground Space Technology, 2006, 21(2): 160-171.
    [5]
    LECA E, NEW B. Settlements induced by tunneling in soft ground[J]. Tunnelling and Underground Space Technology, 2007, 22(2): 119-149.
    [6]
    廖少明, 杨俊龙, 奚程磊, 等. 盾构近距离穿越施工的工作面土压力研究[J]. 岩土力学, 2005, 26(11): 1727-1730. (LIAO Shao-ming, YANG Jun-long, XI Cheng-lei, et al. Approach to earth balance pressure of shield tunneling across ultra-near metro tunnel in operation[J]. Rock and Soil Mechanics, 2005, 26(11): 1727-1730. (in Chinese))
    [7]
    孙玉永, 周顺华, 向科, 等. 近距离下穿既有隧道的盾构施工参数研究[J]. 中国铁道科学, 2010, 31(1): 54-58. (SUN Yu-yong, ZHOU Shun-hua, XIANG Ke, et al. Study on the construction parameters of shield tunneling in short-distance undercrossing the existing tunnel[J]. China Railway Science, 2010, 31(1): 54-58. (in Chinese))
    [8]
    付昱凯, 陆小龙, 丁文其, 等. 盾构隧道施工动态扰动特点及控制分析[J]. 地下空间与工程学报, 2010, 6(4): 810-814. (FU Yu-kai, LU Xiao-long, DING Wen-qi, et al. Analysis on the characteristics of dynamic disturbance due to shield tunneling and the construction control[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(4): 810-814. (in Chinese))
    [9]
    BYUN G, KIM D, LEE S. Behavior of the ground in rectangularly crossed area due to tunnel excavation under the existing tunnel[J]. Tunnelling and Underground Space Technology, 2006, 21(3/4): 361-366.
    [10]
    LIAO S M, LIU J H, WANG R L, et al. Shield tunneling and environment protection in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 454-465.
    [11]
    王非, 缪林昌, 黎春林. 考虑施工过程的盾构隧道沉降数值分析[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2907-2914. (WANG Fei, MIAO Lin-chang, LI Chun-lin. Numerical analysis of shield tunnel settlement considering construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2907-2914. (in Chinese))
    [12]
    LIU H L, LI P, LIU J Y. Numerical investigation of underlying tunnel heave during a new tunnel construction[J]. Tunnelling and Underground Space Technology, 2011, 26(2): 276-283.
    [13]
    黄德中, 马险峰, 王俊淞, 等. 软土地区盾构上穿越既有隧道的离心模拟研究[J]. 岩土工程学报, 2012, 34(3): 520-527. (HUANG De-zhong, MA Xian-feng, WANG Jun-song, et al. Centrifuge modelling of effects of shield tunnels on existing tunnels in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 520-527. (in Chinese))
    [14]
    廖少明, 杨宇恒. 盾构上下夹穿运营地铁的变形控制与实测分析[J]. 岩土工程学报, 2012, 34(5): 812-818. (LIAO Shao-ming, YANG Yu-heng. Deformation analysis and control of a running subway crossed by upper- and lower- shield in succession[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 812-818. (in Chinese))
    [15]
    于宁, 朱合华. 盾构隧道施工地表变形分析与三维有限元模拟[J]. 岩土力学, 2004, 25(8): 1330-1334. (YU Ning, ZHU He-hua. Analysis of earth deformation caused by shield tunnel construction and 3D-FEM simulation[J]. Rock and Soil Mechanics, 2004, 25(8): 1330-1334. (in Chinese))
    [16]
    张云, 殷宗泽, 徐永福. 盾构法隧道引起的地表变形分析[J]. 岩石力学与工程学报, 2002, 21(3): 388-392. (ZHANG Yun, YING Zong-ze, XU Yong-fu. Analysis on three-dimensional ground surface deformations due to shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(3): 388-392. (in Chinese))
    [17]
    黄正荣, 朱伟, 梁精华, 等. 浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J]. 岩土工程学报, 2006, 28(11): 2005-2009. (HUANG Zheng-rong, ZHU Wei, LIANG Jing-hua, et al. Study on limit supporting pressure and stabilization of excavation face for shallow shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2005-2009. (in Chinese))
    [18]
    苟长飞, 叶飞, 张金龙, 等. 盾构隧道同步注浆充填压力环向分布模型[J]. 岩土工程学报, 2013, 35(3): 590-598. (GOU Chang-fei, YE Fei, ZHANG Jin-long, et al. Ring distribution model of filling pressure for shield tunnels under synchronous grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 590-598. (in Chinese))
  • Related Articles

    [1]LIU Si-hong, SHAO Dong-chen, SHEN Chao-min, WANG Zi-jian. Microstructure-based elastoplastic constitutive model for coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 777-783. DOI: 10.11779/CJGE201705001
    [2]LI Jian, ZHAO Cheng-gang, HUANG Qi-di. Constitutive modeling with double-scale pore structure for coupling of capillary hysteresis and stress-strain behaviours in unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2127-2133.
    [3]PENG Fang-le, CAO Yan-bo. FEM analysis of effect of reinforced layer numbers on bearing capacity and deformation of reinforced-sand retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1700-1707.
    [4]Elastoplastic damage coupled model for gas-saturated coal under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [5]XU Chengshun, LUAN Maotian, GUO Ying, ZHANG Zhendong. Elasto-plastic constitutive model of sand considering initial anisotropy and its verification through experiments[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 546-551.
    [6]Lv Xilin, HUANG Maosong, QIAN Jiangu. Bifurcation analysis in true traxial tests on sands based on non-coaxial elasto-plasticity model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 646-651.
    [7]LI Hongru, HU Zaiqiang, CHEN Cunli, XIE Dingyi. Approach of soil dynamic response analysis based on physical state constitutive relationship[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 503-510.
    [8]WANG Gang, ZHANG Jianmin. A cyclic elasto-plastic constitutive model for evaluating large liquefaction-induced deformation of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 51-59.
    [9]CAO Xueshan. Elastoplastic constitutive model of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 832-836.
    [10]Yu Maohong, Yang Songyan, Fan Saucheong, Fung Tatching. Twin Shear Unified Elasto-Plastic Constitutive Model and Its Applications[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(6): 2-10.
  • Cited by

    Periodical cited type(10)

    1. 朱才辉,周小松,乔建伟,李鑫磊. 孔内深层强夯法处理湿陷性黄土地基试验研究. 自然灾害学报. 2025(01): 217-229 .
    2. 张子萱,曹宝花,韩泽敏,许江波,程芳卉,陈绍华,侯鑫敏,詹皓辰. PFC3D颗粒流模拟纳米黏土改良黄土三轴试验. 岩土工程技术. 2024(03): 365-373 .
    3. 杨智慧,李珊花. 基于PFC~(2D)的水泥土单轴压缩试验及细观数值模拟. 中外公路. 2023(01): 189-193 .
    4. 刘欢,张庆文,连晓兰,朱孟龙,聂广影. 非饱和绢云母片岩残积土一维压缩变形规律. 科学技术与工程. 2021(03): 1131-1137 .
    5. 李涛,蒋明镜,李立青. 非饱和重塑黄土应变控制等应力比试验三维离散元分析. 水利与建筑工程学报. 2021(02): 36-41 .
    6. 蒋明镜,王优群,卢国文,张鹏. 非饱和重塑与结构性黄土平面应变试验三维离散元模拟. 水利与建筑工程学报. 2021(02): 1-5+18 .
    7. 李瑶,伏映鹏,廖红建,吕龙龙,董琪. 考虑吸力作用的非饱和土离散元模型及细观参数影响分析. 岩土工程学报. 2021(S1): 246-250 . 本站查看
    8. 米文静,张爱军,刘争宏,刘宏泰. 黄土自重湿陷变形的多地层离心模型试验方法. 岩土工程学报. 2020(04): 678-687 . 本站查看
    9. 蒋明镜. 现代土力学研究的新视野——宏微观土力学. 岩土工程学报. 2019(02): 195-254 . 本站查看
    10. 蒋明镜,张浩泽,李涛,张鹏. 非饱和重塑与结构性黄土等向压缩试验离散元分析. 岩土工程学报. 2019(S2): 121-124 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return