• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
CEN Duo-feng, HUANG Da, HUANG Run-qiu. Step-path failure mode and stability calculation of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 695-706. DOI: 10.11779/CJGE201404014
Citation: CEN Duo-feng, HUANG Da, HUANG Run-qiu. Step-path failure mode and stability calculation of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 695-706. DOI: 10.11779/CJGE201404014

Step-path failure mode and stability calculation of jointed rock slopes

More Information
  • Received Date: June 27, 2013
  • Published Date: April 21, 2014
  • Step-path failure is a kind of typical instability mode in rock slopes. Based on the summary of geological structural features of jointed rock slopes, the step-path failure mode and evolution process are studied by using the discrete element method, particle flow code in two dimensions (PFC2D). Three rock bridge failure modes in slopes can be summarized: tensile coalescence, shear coalescence and mixed tensile-shear coalescence. Through the evolution analysis of the rock mesoscopic particle bond force vector field, stress state of rock bridges and rock bridge failure, the progressive step-path failure process that rock bridge fractures one by one from the bottom up under the action of gravity is revealed, and the tensile crack development in the trailing edge of slope is due to the traction of lower part of slope. Take the slope with shallow dipping step-path parallel fissures for example (dip angle of rock bridge is 90°, and that of fissure is 30°), the step-path failure process can be distributed into four stages: elastic steady deformation of slope, failure of the lower rock bridges, failure of the upper rock bridges and development of tensile crack in the trailing edge of the slope, and the overall slipping of the slope along the failure surface. It is the critical state of instability at stage No. three that slip band sufficiently extends with micro-cracks expanding dramatically. Based on the understanding of failure modes and evolution process, three slope stability models for the step-path failure by shear coalescence, tensile coalescence and mixed tensile-shear coalescence of rock bridges are established, and the limit equilibrium formulae for the safety factor of slopes considering strength and coalescence coefficient of rock bridges are deduced.
  • [1]
    HOEK E, BRAY J. Rock slope engineering[M]. Revised 3rd ed. London: E and FN Spon, 1981.
    [2]
    CAMONES L A M, VARGAS Jr E A, DE FIGUEIREDO R P, et al. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism[J]. Engineering Geology, 2013, 153(2): 80-94.
    [3]
    黄润秋. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报, 2008, 27(8): 1525-1544. (HUANG Run-qiu. Geodynamical process and stability control of high rock slope development[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1525-1544. (in Chinese))
    [4]
    BRIDEAU M A, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology, 2009, 103(1): 30-49.
    [5]
    JENNINGS J E. A mathematical theory for the calculation of the stability of slopes in open cast mine[C]// Proceedings of the Symposium on Planning Open Pit Mines(Johannesburg), 1970: 87-102.
    [6]
    BACZYNSKI N R P. STEPSIM4 “step-path” method for slope risks[C]// International Conference on Geotechnical and Geological Engineering(Australia), 2000: 86-92.
    [7]
    EINSTEIN H H, VENEZIANO D, BAECHER G. B et al. The effect of discontinuity persistence on rock slope stability[J]. Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1983, 20(5): 227-236.
    [8]
    MILLER S, WHYATT J, MCHUGH E. Applications of the point estimation method for stochastic rock slope engineering[C]// Gulf Rocks 2004: Proceedings, Rock Mechanics Across Borders and Disciplines, 6th North American Rock Mechanics Conference, Houston, Texas. ARMA/NARMS (04-517).
    [9]
    WONG L N Y, EINSTEIN H H. Crack coalescence inmolded gypsum and carrara marble: Part 1—Macroscopic observations and interpretation[J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 475-511.
    [10]
    SAGONG M, BOBET A. Coalescence of multiple flaws in a rock-model material in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 229-241.
    [11]
    PRUDENCIO M, VAN SINT JAN M. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 890-902.
    [12]
    Itasca Consulting Group Inc. PFC2D (particle flow code in 2D) theory and background[R]. Minnesota, USA: Itasca Consulting Group Inc, 2008.
    [13]
    黄达, 岑夺丰. 单轴静-动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J]. 岩石力学与工程学报, 2013, 32(9): 1926-1936. (HUANG Da, CEN Duo-feng. Mechanical response and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression successively using particle flow code simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1926-1936. (in Chinese))
    [14]
    LEE H, JEON S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures, 2011, 48(6): 979-999.
    [15]
    ZHANG X P, WONG L N Y. Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1001-1021.
    [16]
    WANG C, TANNANT D D, LILLY P A. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 415-424.
    [17]
    刘顺桂, 刘海宁, 王思敬, 等. 断续节理直剪试验与PFC2D数值模拟分析[J]. 岩石力学与工程学报, 2008, 27(9): 1828-1836. (LIU Shun-gui, LIU Hai-ning, WANG Si-jing, et al. Direct shear tests and PFC2D numerical simulation of intermittent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1828-1836. (in Chinese))
    [18]
    余华中, 阮怀宁, 褚卫江. 岩石节理剪切力学行为的颗粒流数值模拟[J]. 岩石力学与工程学报, 2013, 32(7): 1482-1490. (YU Hua-zhong, RUAN Huai-ning, CHU Wei-jiang. Particle flow code modeling of shear behavior of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1482-1490. (in Chinese))
    [19]
    BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints[J]. Computers and Geotechnics, 2013, 51(6): 101-115.
  • Cited by

    Periodical cited type(10)

    1. 巨凯萱,赵婷婷,刘嘉英,冯云田,王志华. 级配对颗粒材料力学特性影响的卷积神经网络分析. 中国科学:技术科学. 2025(01): 115-132 .
    2. 朱俊宇,汪淼,王桥,汪泾周,马刚,周伟. 球谐级数对数字重构颗粒形状及堆积特性的影响研究. 武汉大学学报(工学版). 2025(03): 343-352 .
    3. 郭晨,陶玉敬,宋章,杜宇本,杨情兵. 川西北某拟建高速公路隧道口高位危岩特征及危险性评价. 铁道技术标准(中英文). 2024(01): 20-28 .
    4. 王晓,薛玉君,程波,刘俊,李济顺. 矿石破碎颗粒黏结模型黏结键特征及表征. 河南理工大学学报(自然科学版). 2024(02): 41-48 .
    5. 刘鑫,徐新钰,黄良,钟源. 不同形状石英砂三轴剪切失稳研究. 西安科技大学学报. 2024(03): 532-542 .
    6. 朱礼臣. 隧道掏槽爆破岩块抛掷堆积形态的数值模拟. 工程爆破. 2024(03): 54-61 .
    7. 李有堂,武彤,李武强. 纤维增强树脂矿物复合材料的细观力学特性及损伤机理. 功能材料. 2024(10): 10127-10133+10141 .
    8. 王宇,刘玉龙,邱德昆,罗苗壮,涂良,唐凯,郭鹏. 钨粉颗粒级配对射孔弹药型罩密度的影响. 测井技术. 2024(06): 861-866 .
    9. 袁锦涛,韩培锋,欧小红,田述军,周梦缘,刘之葵,樊晓一. 基于DEM的滑坡碎屑流运动堆积特性研究. 自然灾害学报. 2023(03): 230-238 .
    10. 李培锋,王晖,吴雨辰,李斯涛,李春. 基于无人机影像的危岩体识别及公路地震风险研究. 地震工程学报. 2022(04): 777-785 .

    Other cited types(20)

Catalog

    Article views (795) PDF downloads (210) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return