• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Ning, ZHANG Cheng-ke, LIU Nai-fei. Applicability of stability criterion for tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 382-389. DOI: 10.11779/CJGE201402016
Citation: LI Ning, ZHANG Cheng-ke, LIU Nai-fei. Applicability of stability criterion for tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 382-389. DOI: 10.11779/CJGE201402016

Applicability of stability criterion for tunnels

More Information
  • Received Date: April 07, 2013
  • Published Date: February 20, 2014
  • The stability criterion for tunnels is established based on modified Fenner formula. This criterion expresses the relationship between the support pressure of a tunnel and the radial displacement of its boundary using a rotationally symmetric model. The assumptions underlying rotational symmetry are a circular tunnel, a hydrostatic and uniform initial stress field, an isotropic and homogeneous ground and uniformly distributed support pressure. The applicability limits of the stability criterion for tunnels are sounded out by systematically investigating the effect of deviations from some of the important assumptions. The classical problem of tunnel excavation in a linearly elastic, perfectly plastic ground obeying the Mohr-Coulomb yield criterion is studied, and the effects of anisotropy and non-uniformity of the initial stress field and a non-circular tunnel geometry are analyzed. The results show that the stability criterion provides a reasonably accurate approximation of allowable convergence for different ground conditions that violate the rotational symmetry.
  • [1]
    李 宁, 陈蕴生, 陈方方, 等. 地下洞室围岩稳定性评判方法新探讨[J]. 岩石力学与工程学报, 2006, 25(9): 1941-1944. (LI Ning, CHEN Yun-sheng, CHEN Fang-fang, et al. Research on tunnel stability criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1941-1944. (in Chinese))
    [2]
    汪明武, 陈光怡, 金菊良. 基于多元联系数—三角模糊数随机模拟的围岩稳定性风险评价[J]. 岩土工程学报, 2011, 33(4): 643-647. (WANG Ming-wu, CHEN Guang-yi, JIN Ju-liang. Risk evaluation of surrounding rock stability based on stochastic simulation of multi-element connection number and triangular fuzzy numbers[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 643-647. (in Chinese))
    [3]
    常利营, 卢建移, 段 波, 等. 基于 Hopfield 网络的地下工程围岩稳定性分类[J]. 岩土工程学报, 2011, 33(增刊1): 187-190. (CHANG Li-ying, LU Jian-yi, DUAN Bo, et al. Stability classification of adjoining rock of underground engineering based on Hopfield network[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 187-190. (in Chinese))
    [4]
    马 莎, 肖 明. 基于突变理论和监测位移的地下洞室稳定评判方法[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3812-3819. (MA Sha, XIAO Ming. Judgment method for stability of underground cavern based on catastrophe theory and monitoring displacement[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3812-3819. (in Chinese))
    [5]
    卡斯特奈 H. 隧道与坑道静力学[M]. 同济大学, 译. 上海: 上海科学技术出版社, 1980. (KASTNER H. Tunnel and trench statics[M]. Tongji University, translator. Shanghai: Shanghai Scientific and Technical Publishers, 1980. (in Chinese))
    [6]
    DETOURNAY E, FAIRHURST C. Two-dimensional elastoplastic analysis of a long, cylindrical cavity under non-hydrostatic loading[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(4): 197-211.
    [7]
    CARRANZA-TORRES C, FAIRHURST C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology, 2000, 15(2): 187-213.
    [8]
    GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, MENÉNDEZ-DÍAZ A, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology, 2008, 23(1): 25-37.
    [9]
    SCHÜRCH R, ANAGNOSTOU G. The applicability of the ground response curve to tunnelling problems that violate rotational symmetry[J]. Rock Mechanics and Rock Engineering, 2012, 45(1): 1-10.
    [10]
    JIANG Y, YONEDA H, TANABASHI Y. Theoretical eastimation of loosening pressure on tunnels in soft rock[J]. Tunnelling and Underground Space Technology, 2001, 16(2): 99-105.
    [11]
    严克强. 不对称荷载作用下圆洞围岩塑性区的估算方法[J]. 岩土工程学报, 1980, 2(2): 74-79. (YAN Ke-qiang. Estimation method of surrounding rock mass plastic zone of round tunnel under asymmetric load[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(2): 74-79. (in Chinese))
    [12]
    魏 符. 对“不对称荷载作用下圆洞围岩塑性区的估算方法”的讨论意见[J]. 岩土工程学报, 1982, 4(1): 116-118. (WEI Fu. Discussion on “Estimation method of surrounding rock mass plastic zone of round tunnel under asymmetric load”[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(1): 116-118. (in Chinese))
    [13]
    BELLO-MALDONADO A A. General elasto-plastic theory applied to circular tunnels (Ko≠1) [C]// The 38th U.S. Symposium on Rock Mechanics. Washington D C, 2001: 1119-1126.
    [14]
    于学馥, 郑颖人, 刘怀恒, 等. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社, 1983. (YU Xue-fu, ZHENG Ying-ren, LIU Huai-heng, et al. Underground engineering rock stability analysis[M]. Beijing: China Coal Industry Publishing House, 1983. (in Chinese))
    [15]
    陈立伟, 彭建兵, 范 文, 等. 基于统一强度理论的非均匀应力场圆形巷道围岩塑性区分析[J]. 煤炭学报, 2007, 32(1): 20-23. (CHEN Li-wei, PENG Jian-bing, FAN Wen, et al. Analysis of surrounding rock mass plastic zone of round tunnel under non-uniform stress field based on the unified strength theory[J]. Journal of China Coal Society, 2007, 32(1): 20-23. (in Chinese))
    [16]
    孙广忠. 岩体力学基础[M]. 北京: 科学出版社, 1983. (SUN Guang-zhong. Fundamental of rock mass mechanics[M]. Beijing: Science Press, 1983. (in Chinese))
    [17]
    蔡晓鸿, 蔡勇平. 水工压力隧洞结构应力计算[M]. 北京: 中国水利水电出版社, 2004. (CAI Xiao-hong, CAI Yong-ping. Structural stress calculation for hydraulic pressure tunnel[M]. Beijing: China Water & Power Press, 2004. (in Chinese))
    [18]
    鲁宾涅依特K B. 矿山岩石力学的几个问题[M]. 马英方,译. 北京: 煤炭工业出版社, 1960. (RUPPNEYT K B. Several problems in mining rock mechanics[M]. MA Ying-fang, translator. Beijng: China Coal Industry Publishing House, 1960. (in Chinese))
    [19]
    IMAMUTDINOV D I, CHANYSHEV A I. Elastoplastic problem of an extended cylindrical working[J]. Journal of Mining Science, 1988, 24(3): 199-207.
    [20]
    孙金山, 卢文波. 非轴对称荷载下圆形隧洞围岩弹塑性分析解析解[J]. 岩土力学, 2007, 28(增刊): 327-332. (SUN Jin-shan, LU Wen-bo. Analytical elastoplastic solutions to supporting rock masses of circular tunnels under asymmetric load[J]. Rock and Soil Mechanics, 2007, 28(S0): 327-332. (in Chinese))
    [21]
    潘 阳, 赵光明, 孟祥瑞. 非均匀应力场下巷道围岩弹塑性分析[J]. 煤炭学报, 2011, 36(增刊1): 53-57. (PAN Yang, ZHAO Guang-ming, MENG Xiang-rui. Elasto-plastic analysis on surrounding rock mass under non-uniform stress field[J]. Journal of China Coal Society, 2011, 36(S1): 53-57. (in Chinese))
    [22]
    SWOBODA G. Program system final-finite element analysis program for linear and nonlinear structure[R]. Innsbruck: University of Innsbruck, 1998.
    [23]
    段乐斋, 王永年, 周文铎, 等. 水利水电工程地下建筑物设计手册[M]. 成都: 四川科学技术出版社, 1993: 25-56. (DUAN Le-zhai, WANG Yong-nian, ZHOU Wen-duo, et al. Design handbook of underground construction in hydroelectric engineering[M]. Chengdu: Sichuan Scientific and Technical Press, 1993: 25-56. (in Chinese))
    [24]
    MINDLIN R D. Stress distribution around a tunnel[M]. New York: American Society of Civil Engineers, 1939.
    [25]
    王明年, 郭 军, 罗禄森, 等. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. 岩土力学, 2010, 31(4): 1157-1162. (WANG Ming-nian, GUO Jun, LUO Lu-sen, et al. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. Rock and Soil Mechancis, 2010, 31(4): 1157-1162. (in Chinese))
    [26]
    BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, 1983, 109(1): 15-39.
    [27]
    范鹏贤, 王明洋, 李文培. 岩土介质中圆形隧洞围岩压力理论分析进展[J]. 现代隧道技术, 2010, 47(2): 1-7. (FAN Peng-xian, WANG Ming-yang, LI Wen-pei. Progress in Theoretical analysis of ground response to circular excavations in rock & soil medium[J]. Modern Tunnelling Technology, 2010, 47(2): 1-7. (in Chinese))
  • Cited by

    Periodical cited type(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 .
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 .
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 .
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 .
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 .
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 .
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 .
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 .
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 .
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 .
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return