Citation: | LIU Jing-jing, TANG Xiao-wu, WANG Yan. Competitive adsorption behavior and mechanism of loess towards Pb(II), Cu(II) and Cd(II)[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 327-333. DOI: 10.11779/CJGE201402009 |
[1] |
SARADA B, PRASAD M K, KUMAR K K, et al. Potential use of leaf biomass, araucaria heterophylla for removal of Pb+2[J]. International Journal of Phytoremediation, 2013, 15(8): 756-773.
|
[2] |
DIXIT S, SINGH D P. Phycoremediation of lead and cadmium by employing nostoc muscorum as biosorbent and optimization of its biosorption potential[J]. International Journal of Phytoremediation, 2013, 15(8): 801-813.
|
[3] |
CERINO-CORDOVA F J, DIAZ-FLORES P E, GARCIA-REYES R B, et al. Biosorption of Cu(II) and Pb(II) from aqueous solutions by chemically modified spent coffee grains[J]. International Journal of Environmental Science and Technology, 2013, 10(3): 611-622.
|
[4] |
SHAHBAZI A, YOUNESI H, BADIEI A. Batch and fixed-bed column adsorption of Cu(II), Pb(II) and Cd(II) from aqueous solution onto functionalised SBA-15 mesoporous silica[J]. Canadian Journal of Chemical Engineering, 2013, 91(4): 739-750.
|
[5] |
CHEN G Q, GUAN S, ZENG G M, et al. Cadmium removal and 2, 4-dichlorophenol degradation by immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles[J]. Applied Microbiology and Biotechnology, 2013, 97(7): 3149-3157.
|
[6] |
GB3838—2002 地表水环境质量标准[S]. 2002. (GB3838—2002 Environmental quality standard for surface water[S]. 2002. (in Chinese))
|
[7] |
GB8978—1996 污水综合排放标准[S]. 1996. (GB8978—1996 Integrated water discharge standard[S]. 1996. (in Chinese))
|
[8] |
郭 鸿, 骆亚生, 李广冬. 考虑地区差异性的饱和黄土三轴渗透试验研究[J]. 中国农村水利水电, 2009(10): 112-114. (GUO Hong, LUO Ya-sheng, LI Guang-dong. Experimental research on triaxial seepage test of saturated loess based on regional differences[J]. China Rural Water and Hydropower, 2009(10): 112-114. (in Chinese))
|
[9] |
LI Z Z, TANG X W, CHEN Y M, et al. Sorption behavior and mechanism of Pb(II) on Chinese loess[J]. Journal of Environmental Engineering-ASCE, 2009, 135(1): 58-67.
|
[10] |
TANG X W, LI Z Z, CHEN Y M, et al. Removal of Zn(II) from aqueous solution with natural Chinese loess: behaviors and affecting factors[J]. Desalination, 2009, 249(1): 49-57.
|
[11] |
TANG X W, LI Z Z, CHEN Y M, et al. Removal of Cu(II) from aqueous solution by adsorption on Chinese quaternary loess: kinetics and equilibrium studies[J]. Journal of Environmental Science and Health Part A, 2008, 43(7): 1-13.
|
[12] |
WANG Y, TANG X W, CHEN Y M, et al. Adsorption behavior and mechanism of Cd(II) on loess soil from China[J]. Journal of Hazardous Materials, 2009, 172(1): 30-37.
|
[13] |
王 艳, 唐晓武, 王恒宇, 等. 重金属Mn(II)在黄土上的吸附和解吸特性研究[J]. 岩土工程学报, 2011, 33(增刊1): 369-373. (WANG Yan, TANG Xiao-wu, WANG Heng-yu, et al. Sorption and desorption behaviors of heavy metal Mn(II) on loess soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 369-373. (in Chinese))
|
[14] |
王 艳, 唐晓武, 刘晶晶, 等. 黄土对锰离子的吸附特性及机理研究[J]. 岩土工程学报, 2012, 34(12): 2292-2298. (WANG Yan, TANG Xiao-wu, LIU Jing-jing, et al. Adsorption behavior and mechanism of loess soil towards manganese ions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2292-2298. (in Chinese))
|
[15] |
GILES C H, SMITH D, HUITSON A. A general treatment and classification of the solute sorption isotherms. I. Theoretical[J]. Journal of Colloid and Interface Science, 1974, 47(3): 755-765.
|
[16] |
DO D D. Adsorption analysis: equilibria and kinetics[M]. London: Imperical College Press, 1998.
|
[17] |
ÖZCAN A, ÖNCÜ E M, ÖZCAN A S. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277(1/2/3): 90-97.
|
[18] |
COVELO E F, ANDRADE M L, VEGA F A. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics[J]. Journal of Colloid and Interface Science, 2004, 280(1): 1-8.
|
[19] |
DIJKSTRA J J, MEEUSSEN J C L, COMANS R N J. Leaching of heavy metals from contaminated soils: An experimental and modeling study[J]. Environmental Science and Technology, 2004, 38(16): 4390-4395.
|
[20] |
VIDAL M, SANTOS M J, ABRAO T, et al. Modeling competitive metal sorption in a mineral soil[J]. Geoderma, 2009, 149(3/4): 189-198.
|
[1] | FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014 |
[2] | MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021 |
[3] | ZHANG Wen-jie, CHEN Lu, YAN Hong-gang. Water retention characteristics and pore size distribution of landfilled municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1491-1497. DOI: 10.11779/CJGE201808015 |
[4] | XU Jie, ZHAO Wen-bo, CHEN Yong-hui, LU Jia-nan. Experimental study on initial shear modulus and pore-size distribution of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 227-231. DOI: 10.11779/CJGE2017S1045 |
[5] | LIU Yang, WANG Cheng-lin, ZHANG Duo. Distribution and evolution of pore structure in 2D granular materials under biaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013 |
[6] | SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020 |
[7] | HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. |
[8] | LIANG Yue, CHENJian-sheng, CHEN Liang. Numerical simulation model for pore flows and distribution of their velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104-1109. |
[9] | LI Fuqiang, WANG Zhao, CHEN Lun, XUE Yongping. Digital image analysis to determine pore size distribution of filtration materials[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 857-860. |
[10] | CHANG Dave Ta-tech, TING Yuan-hao, CHENG Chia-ling. Study on variation of pore structure of geotextiles effected by filtration with soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 500-504. |