• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Jing-jing, TANG Xiao-wu, WANG Yan. Competitive adsorption behavior and mechanism of loess towards Pb(II), Cu(II) and Cd(II)[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 327-333. DOI: 10.11779/CJGE201402009
Citation: LIU Jing-jing, TANG Xiao-wu, WANG Yan. Competitive adsorption behavior and mechanism of loess towards Pb(II), Cu(II) and Cd(II)[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 327-333. DOI: 10.11779/CJGE201402009

Competitive adsorption behavior and mechanism of loess towards Pb(II), Cu(II) and Cd(II)

More Information
  • Received Date: June 16, 2013
  • Published Date: February 20, 2014
  • Lead, copper, cadmium is three kinds of typical heavy metal contaminants which can be used to simulate the solution of composite contaminate. The factors including the concentration and soil-water ratio are studied to investigate the competitive adsorption behaviors of loess towards Pb(II), Cu(II) and Cd(II). The adsorption test results can be interpreted by three isotherm models (i.e., Langmuir, Freundlich and D-R models) to certain extent. The preference ranking of loess to three heavy metal ions is Pb(II)>Cu(II)>Cd(II). Compared with those of single adsorption, the adsorption capacities of the competitive ions on loess decrease to some extent. Higher initial concentration of heavy metal ions leads to larger optimum adsorption amount of loess, and the adsorption removal efficiency decreases at the same time. The removal efficiency of three heavy metal ions from aqueous solution can be increased by increasing the solid-liquid ratio. The results may provide an evidence for loess as the containment barrier system as well as the adsorbent removing heavy metal containment in aquatic environment.
  • [1]
    SARADA B, PRASAD M K, KUMAR K K, et al. Potential use of leaf biomass, araucaria heterophylla for removal of Pb+2[J]. International Journal of Phytoremediation, 2013, 15(8): 756-773.
    [2]
    DIXIT S, SINGH D P. Phycoremediation of lead and cadmium by employing nostoc muscorum as biosorbent and optimization of its biosorption potential[J]. International Journal of Phytoremediation, 2013, 15(8): 801-813.
    [3]
    CERINO-CORDOVA F J, DIAZ-FLORES P E, GARCIA-REYES R B, et al. Biosorption of Cu(II) and Pb(II) from aqueous solutions by chemically modified spent coffee grains[J]. International Journal of Environmental Science and Technology, 2013, 10(3): 611-622.
    [4]
    SHAHBAZI A, YOUNESI H, BADIEI A. Batch and fixed-bed column adsorption of Cu(II), Pb(II) and Cd(II) from aqueous solution onto functionalised SBA-15 mesoporous silica[J]. Canadian Journal of Chemical Engineering, 2013, 91(4): 739-750.
    [5]
    CHEN G Q, GUAN S, ZENG G M, et al. Cadmium removal and 2, 4-dichlorophenol degradation by immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles[J]. Applied Microbiology and Biotechnology, 2013, 97(7): 3149-3157.
    [6]
    GB3838—2002 地表水环境质量标准[S]. 2002. (GB3838—2002 Environmental quality standard for surface water[S]. 2002. (in Chinese))
    [7]
    GB8978—1996 污水综合排放标准[S]. 1996. (GB8978—1996 Integrated water discharge standard[S]. 1996. (in Chinese))
    [8]
    郭 鸿, 骆亚生, 李广冬. 考虑地区差异性的饱和黄土三轴渗透试验研究[J]. 中国农村水利水电, 2009(10): 112-114. (GUO Hong, LUO Ya-sheng, LI Guang-dong. Experimental research on triaxial seepage test of saturated loess based on regional differences[J]. China Rural Water and Hydropower, 2009(10): 112-114. (in Chinese))
    [9]
    LI Z Z, TANG X W, CHEN Y M, et al. Sorption behavior and mechanism of Pb(II) on Chinese loess[J]. Journal of Environmental Engineering-ASCE, 2009, 135(1): 58-67.
    [10]
    TANG X W, LI Z Z, CHEN Y M, et al. Removal of Zn(II) from aqueous solution with natural Chinese loess: behaviors and affecting factors[J]. Desalination, 2009, 249(1): 49-57.
    [11]
    TANG X W, LI Z Z, CHEN Y M, et al. Removal of Cu(II) from aqueous solution by adsorption on Chinese quaternary loess: kinetics and equilibrium studies[J]. Journal of Environmental Science and Health Part A, 2008, 43(7): 1-13.
    [12]
    WANG Y, TANG X W, CHEN Y M, et al. Adsorption behavior and mechanism of Cd(II) on loess soil from China[J]. Journal of Hazardous Materials, 2009, 172(1): 30-37.
    [13]
    王 艳, 唐晓武, 王恒宇, 等. 重金属Mn(II)在黄土上的吸附和解吸特性研究[J]. 岩土工程学报, 2011, 33(增刊1): 369-373. (WANG Yan, TANG Xiao-wu, WANG Heng-yu, et al. Sorption and desorption behaviors of heavy metal Mn(II) on loess soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 369-373. (in Chinese))
    [14]
    王 艳, 唐晓武, 刘晶晶, 等. 黄土对锰离子的吸附特性及机理研究[J]. 岩土工程学报, 2012, 34(12): 2292-2298. (WANG Yan, TANG Xiao-wu, LIU Jing-jing, et al. Adsorption behavior and mechanism of loess soil towards manganese ions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2292-2298. (in Chinese))
    [15]
    GILES C H, SMITH D, HUITSON A. A general treatment and classification of the solute sorption isotherms. I. Theoretical[J]. Journal of Colloid and Interface Science, 1974, 47(3): 755-765.
    [16]
    DO D D. Adsorption analysis: equilibria and kinetics[M]. London: Imperical College Press, 1998.
    [17]
    ÖZCAN A, ÖNCÜ E M, ÖZCAN A S. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277(1/2/3): 90-97.
    [18]
    COVELO E F, ANDRADE M L, VEGA F A. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics[J]. Journal of Colloid and Interface Science, 2004, 280(1): 1-8.
    [19]
    DIJKSTRA J J, MEEUSSEN J C L, COMANS R N J. Leaching of heavy metals from contaminated soils: An experimental and modeling study[J]. Environmental Science and Technology, 2004, 38(16): 4390-4395.
    [20]
    VIDAL M, SANTOS M J, ABRAO T, et al. Modeling competitive metal sorption in a mineral soil[J]. Geoderma, 2009, 149(3/4): 189-198.
  • Related Articles

    [1]FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
    [2]MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021
    [3]ZHANG Wen-jie, CHEN Lu, YAN Hong-gang. Water retention characteristics and pore size distribution of landfilled municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1491-1497. DOI: 10.11779/CJGE201808015
    [4]XU Jie, ZHAO Wen-bo, CHEN Yong-hui, LU Jia-nan. Experimental study on initial shear modulus and pore-size distribution of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 227-231. DOI: 10.11779/CJGE2017S1045
    [5]LIU Yang, WANG Cheng-lin, ZHANG Duo. Distribution and evolution of pore structure in 2D granular materials under biaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013
    [6]SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020
    [7]HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462.
    [8]LIANG Yue, CHENJian-sheng, CHEN Liang. Numerical simulation model for pore flows and distribution of their velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104-1109.
    [9]LI Fuqiang, WANG Zhao, CHEN Lun, XUE Yongping. Digital image analysis to determine pore size distribution of filtration materials[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 857-860.
    [10]CHANG Dave Ta-tech, TING Yuan-hao, CHENG Chia-ling. Study on variation of pore structure of geotextiles effected by filtration with soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 500-504.
  • Cited by

    Periodical cited type(7)

    1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 .
    2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 .
    3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 .
    4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 .
    5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 .
    6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 .
    7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 .

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return