• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
WEN Jixiang, FAN Henghui, JIA Qiongyu, LIU Yuqian, SUN Zengchun. Seepage stability of dispersive soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 958-967. DOI: 10.11779/CJGE20231237
Citation: WEN Jixiang, FAN Henghui, JIA Qiongyu, LIU Yuqian, SUN Zengchun. Seepage stability of dispersive soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 958-967. DOI: 10.11779/CJGE20231237

Seepage stability of dispersive soil-structure interface

More Information
  • Received Date: December 17, 2023
  • Available Online: August 08, 2024
  • The dispersive soil has the characteristics of dispersing and losing when encountering water. The buildings located in the dispersive soil often suffer from seepage deformation at the interface under the coupling effects of soils-water-buildings, which often leads to dangerous situations in water conservancy projects. By using different artificially dispersive soils, conducting dispersivity and impermeability tests, and considering the separation and void from the soils and buildings caused by factors such as uneven settlement and vibration, the crack erosion tests are conducted on the non-dispersive soil and dispersive soil in the void area at the upper and lower sides of the pipelines. The results show that: (1) With the increase of sodium carbonate content, the soil samples gradually change from non-dispersibility to dispersibility. The critical hydraulic gradient decreases from 120.0 to 12.9 and 14.7, and the impermeability decreases significantly. (2) The cracks (without buildings) of the dispersive soil and non-dispersive soil can be gradually healed under the protection of filter, and the crack section can bear a slope drop greater than 59.0 and 51.2, respectively at the end of the tests, the anti-permeability performance is significantly improved. (3) Under the same dry density, compared with those in the non-dispersive soil, the cracks in the dispersive soil heal faster and can quickly fill and block the seepage channel under low-speed flowing water. (4) When the cracks are located in the upper part of the buildings, the non-dispersive soil and dispersive soil can bear hydraulic gradients greater than 87.4 and 63.1, respectively, and they can gradually heal under the protection of the filter and have certain impermeability properties. When the cracks are located at the bottom of the buildings, the crack section basically does not bear the hydraulic gradient. It is difficult to heal under the protection of the filter, and it is prone to piping of the filter under high water head.
  • [1]
    蒋金平, 杨正华. 中国小型水库溃坝规律与对策[J]. 岩土工程学报, 2008, 30(11): 1626-1631. doi: 10.3321/j.issn:1000-4548.2008.11.009

    JIANG Jinping, YANG Zhenghua. Laws of dam failures of small-sized reservoirs and countermeasures[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1626-1631. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.11.009
    [2]
    孙东亚, 姚秋玲, 赵雪莹. 堤坝涵管接触冲刷破坏模式分析[J]. 中国水利水电科学研究院学报, 2021, 19(2): 276-280.

    SUN Dongya, YAO Qiuling, ZHAO Xueying. Analysis of failure modes of conduits through embankment dams due to contact erosion[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(2): 276-280. (in Chinese)
    [3]
    刘杰. 八一水库溃坝原因分析[J]. 中国水利水电科学研究院学报, 2004, 2(3): 161-166. doi: 10.3969/j.issn.1672-3031.2004.03.001

    LIU Jie. Analysis of dam break of Bayi Reservoir[J]. Journal of China Institute of Water Resources and Hydropower Research, 2004, 2(3): 161-166. (in Chinese) doi: 10.3969/j.issn.1672-3031.2004.03.001
    [4]
    钱家欢. 分散性土作为坝料的一些问题[J]. 岩土工程学报, 1981, 3(1): 94-100. doi: 10.3321/j.issn:1000-4548.1981.01.009

    QIAN Jiahuan. Problems on dispersive soil as dam materials[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(1): 94-100. (in Chinese) doi: 10.3321/j.issn:1000-4548.1981.01.009
    [5]
    樊恒辉, 孔令伟. 分散性土研究[M]. 北京: 中国水利水电出版社, 2012.

    FAN Henghui, KONG Lingwei. Dispersive Clay Studies[M]. Beijing: China Water & Power Press, 2012. (in Chinese)
    [6]
    樊恒辉, 张路, 杨秀娟, 等. 分散性土及工程应用的研究进展[J]. 水利与建筑工程学报, 2019, 17(3): 10-21. doi: 10.3969/j.issn.1672-1144.2019.03.002

    FAN Henghui, ZHANG Lu, YANG Xiujuan, et al. Advances in research and engineering applicaitons of dispersive soil[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(3): 10-21. (in Chinese) doi: 10.3969/j.issn.1672-1144.2019.03.002
    [7]
    樊恒辉, 李洪良, 赵高文. 黏性土的物理化学及矿物学性质与分散机理[J]. 岩土工程学报, 2012, 34(9): 1740-1745. http://cge.nhri.cn/article/id/14705

    FAN Henghui, LI Hongliang, ZHAO Gaowen. Relation among dispersive mechanism, physical-chemical and mineral properties of clayey soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1740-1745. (in Chinese) http://cge.nhri.cn/article/id/14705
    [8]
    NAGY G, NAGY L, et al. Examination of the physico- chemical composition of dispersive soils[J]. Periodica Polytechnica Civil Engineering, 2016, 60(2): 269-279. doi: 10.3311/PPci.8896
    [9]
    BELL F G, WALKER D J H. A further examination of the nature of dispersive soils in Natal, South Africa[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2000, 33(3): 187-199. doi: 10.1144/qjegh.33.3.187
    [10]
    FOSTER M, FELL R, SPANNAGLE M. The statistics of embankment dam failures and accidents[J]. Canadian Geotechnical Journal, 2000, 37(5): 1000-1024. doi: 10.1139/t00-030
    [11]
    刘杰, 缪良娟. 分散性黏性土的抗渗特性[J]. 岩土工程学报, 1987, 9(2): 90-97. doi: 10.3321/j.issn:1000-4548.1987.02.011

    LIU Jie, MIAO Liangjuan. Impermeability characteristics of dispersed cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(2): 90-97. (in Chinese) doi: 10.3321/j.issn:1000-4548.1987.02.011
    [12]
    李振, 周俊. 防渗土样的分散性与渗透变形试验研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3316-3321.

    LI Zhen, ZHOU Jun. Experimental study on dispersion and seepage deformation of impervious soil samples[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3316-3321. (in Chinese)
    [13]
    樊恒辉, 孔令伟, 郭敏霞, 等. 文家沟水库筑坝土料分散性和抗渗性能试验[J]. 岩土工程学报, 2009, 31(3): 458-463. doi: 10.3321/j.issn:1000-4548.2009.03.025

    FAN Henghui, KONG Lingwei, GUO Minxia, et al. Dispersivity and impermeability of dam soil in Wenjiagou Reservoir[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 458-463. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.03.025
    [14]
    党进谦, 马晓婷, 孙仲林, 等. 分散性对心墙土料裂缝冲刷影响的试验研究[J]. 水利学报, 2012, 43(9): 1103-1107.

    DANG Jinqian, MA Xiaoting, SUN Zhonglin, et al. Experimental study on influence of dispersion on the crack washout of the core wall material[J]. Journal of Hydraulic Engineering, 2012, 43(9): 1103-1107. (in Chinese)
    [15]
    SATO M, KUWANO R. Influence of location of subsurface structures on development of underground cavities induced by internal erosion[J]. Soils and Foundations, 2015, 55(4): 829-840. doi: 10.1016/j.sandf.2015.06.014
    [16]
    GUO S, SHAO Y, ZHANG T Q, et al. Physical modeling on sand erosion around defective sewer pipes under the influence of groundwater[J]. Journal of Hydraulic Engineering, 2013, 139(12): 1247-1257. doi: 10.1061/(ASCE)HY.1943-7900.0000785
    [17]
    徐坤, 苏永华, 刘煌海, 等. 深水位地下渗流诱发的地面塌陷模型试验[J]. 实验力学, 2022, 37(2): 221-233.

    XU Kun, SU Yonghua, LIU Huanghai, et al. Model test of ground collapse induced by groundwater seepage at deep water level[J]. Journal of Experimental Mechanics, 2022, 37(2): 221-233. (in Chinese)
    [18]
    KWAK T Y, WOO S I, KIM J, et al. Model test assessment of the generation of underground cavities and ground cave-ins by damaged sewer pipes[J]. Soils and Foundations, 2019, 59(3): 586-600. doi: 10.1016/j.sandf.2018.12.011
    [19]
    阚瑞清, 吴富萍, 盛守田, 等. 分散性黏土渠道边坡的破坏原因与防治措施[J]. 防渗技术, 1998, 4(4): 37-39.

    KAN Ruiqing, WU Fuping, SHENG Shoutian, et al. Damage causes and prevention measures of dispersed clay channel slope[J]. Technique of Seepage Control, 1998, 4(4): 37-39. (in Chinese)
    [20]
    顾淦臣. 用分散性黏土筑坝需采取的工程措施[J]. 人民黄河, 1983, 5(3): 11-15.

    GU Ganchen. Engineering measures to be taken in dam construction with dispersed clay[J]. Yellow River, 1983, 5(3): 11-15. (in Chinese)
    [21]
    路立娜, 樊恒辉, 陈华, 等. 分散性土单轴抗拉强度影响因素试验研究[J]. 岩土工程学报, 2014, 36(6): 1160-1166.

    LU Lina, FAN Henghui, CHEN Hua, et al. Influencing factors for uniaxial tensile strength of dispersive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1160-1166. (in Chinese)
    [22]
    倪晓逸, 张路, 樊恒辉, 等. 原位热力加固分散土的影响因素及其作用机理研究[J]. 岩土工程学报, 2023, 45(6): 1240-1249. doi: 10.11779/CJGE20220280

    NI Xiaoyi, ZHANG Lu, FAN Henghui, et al. Influencing factors and action mechanism of in situ thermal reinforcement of dispersive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1240-1249. (in Chinese) doi: 10.11779/CJGE20220280
    [23]
    陶然, 孟敏强, 张文博, 等. 基于分散机理的细粒土分散性判别方法研究[J]. 岩土工程学报, 2023, 45(3): 599-608.

    TAO Ran, MENG Minqiang, ZHANG Wenbo, et al. Discrimination methods for dispersivity of fine-grained soils based on dispersive mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 599-608. (in Chinese)
    [24]
    樊恒辉, 孔令伟, 李洪良, 等. 马家树水库大坝防渗土料分散性判别和改性试验[J]. 岩土力学, 2010, 31(1): 193-198, 222.

    FAN Henghui, KONG Lingwei, LI Hongliang, et al. Study of dispersive identification and treatment with lime of dam soil in Majiushu Reservoir[J]. Rock and Soil Mechanics, 2010, 31(1): 193-198, 222. (in Chinese)
    [25]
    VAKILI A H, BIN SELAMAT M R, ABDUL AZIZ H B. Filtration of broadly graded cohesive dispersive base soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(5): 04015004.
    [26]
    郭爱国, 侍克斌. 一种分散性黏土裂缝自愈与反滤保护试验[J]. 岩石力学与工程学报, 2002, 21(12): 1886-1890.

    GUO Aiguo, SHI Kebin. Investigation on crack self-healing and inverted filter protection of a dispersive clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1886-1890. (in Chinese)
  • Related Articles

    [1]WANG Yu, ZHENG Tong, SUN Rui, QI Wenhao, LI Linggui, CHENG Yang, ZHANG Yiming. Comparative tests on seismic performance of anti-slide piles with prestressed anchor cables with different angles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 110-115. DOI: 10.11779/CJGE2023S20012
    [2]CHAI Shaofeng, WANG Lanmin, WANG Ping, GUO Haitao, XIA Xiaoyu, CHE Gaofeng, WANG Huijuan. Shaking table tests on sliding characteristics and mechanism of liquefaction landslide of low-angle loess deposit in Shibeiyuan[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2565-2574. DOI: 10.11779/CJGE20221123
    [3]WANG Liang-feng, WANG Bin, CHEN Sheng-shui, LI Yue. Large-scale triaxial tests and modelling mechanical behaviors of soil-rockfill materials for a mine tailings dam[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 157-161. DOI: 10.11779/CJGE2018S2032
    [4]ZHENG Gang, LI Zhi-wei. Finite element analysis of response of buildings with arbitrary angle adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 615-624.
    [5]LI Dawei, HOU Chaojiong, BAI Jianbiao. Control mechanism and application of doubly supported roadways with large rigidity and high strength[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1072-1078.
    [6]JIANG Zhongxin. Discussion on sliding angle formula in "Computation of lateral soil pressure on soil nailing wall considering cohesion force and cut slope angle"[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 952.
    [7]DONG Yun, YAN Zongling. 2D mechanical model tests on settlement of rock-soil filled roadbed[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 943-947.
    [8]XIA Junwu, YUAN Yingshu, DONG Zhengzhu. Mechanism study on subsoil-strap footing-framework interaction in mining subsidence area[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 537-541.
    [9]SU Zhongjie, YU Guangming, YANG Lun. Application of mechanical model to deformation of covered rock separation strata[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 778-781.
    [10]Liu Bao-shen, Yan Ruong-gu. Mechanical Models of Fractured Rock[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(4): 81-92.
  • Cited by

    Periodical cited type(7)

    1. 罗强,程田,薛元,刘宏扬,张东卿. 路堤下CFG桩复合地基稳定性分析方法及试验验证. 铁道学报. 2024(11): 145-154 .
    2. 周岳,柯辉,庞正伟,汪旭,祝必仁,王虎. 基坑开挖对超深软土复合地基桩体的影响研究. 广州建筑. 2023(06): 1-4 .
    3. 罗强,马宏飞,王腾飞,张良,蒋良潍. 路堤下混凝土桩复合地基抗桩体弯折破坏地梁效应. 中南大学学报(自然科学版). 2022(08): 3144-3155 .
    4. 郑刚,赵佳鹏,周海祚,于晓旋,夏博洋,王金山. 国内外高速公路、铁路地基处理技术回顾. 地基处理. 2021(02): 91-99 .
    5. 张经双,段雪雷,吴倩云,刘永翔,夏香港. 氯盐-干湿循环耦合作用下水泥土的力学性能. 建筑材料学报. 2021(03): 508-515+550 .
    6. 刘仕东. 上合组织(连云港)国际物流园专用铁路搅拌桩水泥掺量研究. 铁道勘察. 2020(02): 47-52 .
    7. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return