Citation: | ZHU Rui, XING Wei, GUO Wanli, HUANG Yinghao, ZHOU Feng, WANG Xudong. Freeze-thaw performance and micro-mechanism of canal foundation silt treated by MICP[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 376-387. DOI: 10.11779/CJGE20231014 |
[1] |
蔡正银, 朱锐, 黄英豪, 等. 冻融过程对膨胀土渠道边坡劣化模式的影响[J]. 水利学报, 2020, 51(8): 915-923.
CAI Zhengyin, ZHU Rui, HUANG Yinghao, et al. Influences of freeze-thaw process on the deterioration mode of expansive soil canal slope[J]. Journal of Hydraulic Engineering, 2020, 51(8): 915-923. (in Chinese)
|
[2] |
邢玮, 朱锐, 张晨, 等. 高寒地区供水渠道水热特征及其长期演化规律[J]. 南京工业大学学报(自然科学版), 2024, 46(1): 93-102. doi: 10.3969/j.issn.1671-7627.2024.01.011
XING Wei, ZHU Rui, ZHANG Chen, et al. Hydrothermal characteristics and its long-term evolution of canals in cold regions[J]. Journal of Nanjing Tech University (Natural Science Edition), 2024, 46(1): 93-102. (in Chinese) doi: 10.3969/j.issn.1671-7627.2024.01.011
|
[3] |
汪恩良, 姜海强, 付强, 等. 冻融对饱和渠基土物理力学性质的影响[J]. 农业机械学报, 2018, 49(3): 287-294.
WANG Enliang, JIANG Haiqiang, FU Qiang, et al. Experiment on effect of freezing and thawing on physical and mechanical properties of saturated channel foundation soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 287-294. (in Chinese)
|
[4] |
黄英豪, 陈永, 朱洵, 等. 相变材料改良膨胀土冻融性能试验研究及微观机理分析[J]. 岩土工程学报, 2021, 43(11): 1994-2002. doi: 10.11779/CJGE202111005
HUANG Yinghao, CHEN Yong, ZHU Xun, et al. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. (in Chinese) doi: 10.11779/CJGE202111005
|
[5] |
何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008
HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008
|
[6] |
刘汉龙, 肖杨. 微生物土力学原理与应用[M]. 北京: 科学出版社, 2022.
LIU Hanlong, XIAO Yang. Biocemented Soils Mechanical Principles and Applications[M]. Beijing: Science Press, 2022. (in Chinese)
|
[7] |
TANG C S, YIN L Y, JIANG N J, et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review[J]. Environmental Earth Sciences, 2020, 79(5): 94. doi: 10.1007/s12665-020-8840-9
|
[8] |
邵光辉, 侯敏, 刘鹏. MICP固化粉土细菌的分布和固定规律研究[J]. 林业工程学报, 2019, 4(1): 128-134.
SHAO Guanghui, HOU Min, LIU Peng. Distribution and fixation characteristics of microorganism in MICP treated silt column[J]. Journal of Forestry Engineering, 2019, 4(1): 128-134. (in Chinese)
|
[9] |
刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416.
LIU Lu, SHEN Yang, LIU Hanlong, et al. Application of bio-cement in erosion control of levees[J]. Rock and Soil Mechanics, 2016, 37(12): 3410-3416. (in Chinese)
|
[10] |
GAO Y F, TANG X Y, CHU J, et al. Microbially induced calcite precipitation for seepage control in sandy soil[J]. Geomicrobiology Journal, 2019, 36(4): 366-375. doi: 10.1080/01490451.2018.1556750
|
[11] |
JIN G X, XU K, XU C S, et al. Cementation of shale soils by MICP technology and its damage characteristics due to freeze-thaw weathering processes[J]. Journal of Cold Regions Engineering, 2020, 34(4): 04020023. doi: 10.1061/(ASCE)CR.1943-5495.0000229
|
[12] |
AHENKORAH I, RAHMAN M M, KARIM M R, et al. Unconfined compressive strength of MICP and EICP treated sands subjected to cycles of wetting-drying, freezing-thawing and elevated temperature: Experimental and EPR modelling[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(5): 1226-1247. doi: 10.1016/j.jrmge.2022.08.007
|
[13] |
LIU L, LIU H L, STUEDLEIN A W, et al. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(10): 1502-1513. doi: 10.1139/cgj-2018-0007
|
[14] |
WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. doi: 10.1080/01490450701436505
|
[15] |
OLIVEIRA P J V, FREITAS L D, CARMONA J P S F. Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement[J]. Journal of Materials in Civil Engineering, 2017, 29(4): 04016263. doi: 10.1061/(ASCE)MT.1943-5533.0001804
|
[16] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[17] |
ZHANG W C, JU Y, ZONG Y W, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science & Technology, 2018, 52(16): 9266-9276.
|
[18] |
郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(5): 1282-1287, 1294.
ZHENG Yun, MA Wei, BING Hui. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing[J]. Rock and Soil Mechanics, 2015, 36(5): 1282-1287, 1294. (in Chinese)
|
1. |
王琳琳. 不同围压下三轴试验土体变形特性检测对比研究. 实验室检测. 2025(04): 158-160 .
![]() |